Towards a geometrical equivalence of norms
Loading...
Date
Authors
Kikianty, Eder
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor and Francis
Abstract
Angular equivalence of norms, introduced by Kikianty and Sinnamon (2017), is a notion of norm equivalence that is more attuned to the geometry of the norms. For certain geometrical properties and two angularly equivalent norms, it is the case that if one of the norms has a property, then so does the other. In this paper, we show further results in this direction, namely angularly equivalent norms share the property of non-squareness; and that the exposed points of the unit balls are in the same direction, under the condition that these points are assumed to be smooth with respect to both norms. A discussion on (the angular equivalence of) the dual norms of angularly equivalent norms is also given, giving a partial answer to an open problem as stated in the paper by Kikianty and Sinnamon (2017).
Description
Keywords
Equivalent norms, Uniform non-squareness, Exposed points, Angles in Banach spaces
Sustainable Development Goals
None
Citation
Eder Kikianty (2024) Towards a geometrical equivalence of norms, Quaestiones Mathematicae, 47: sup1, 247-264, DOI: 10.2989/16073606.2023.2287845.
