Spatially distributed statistical significance approach for real parameter tuning with restricted budgets

dc.contributor.authorVogel, A.J. (Adolph)
dc.contributor.authorWilke, Daniel Nicolas
dc.contributor.emailnico.wilke@up.ac.zaen_ZA
dc.date.accessioned2018-10-09T07:55:41Z
dc.date.issued2018-09
dc.description.abstractParameter tuning aims to find suitable parameter values for heuristic optimisation algorithms that allows for the practical application of such algorithms. Conventional tuning approaches view the tuning problem as two distinct problems, namely, a stochastic problem to quantify the performance of a parameter vector and a deterministic problem for finding improved parameter vectors in the meta-design space. A direct consequence of this viewpoint is that parameter vectors are sampled multiple times to resolve their respective performance uncertainties. In this study we share an alternative viewpoint, which is to consider the tuning problem as a single stochastic problem for which both the spatial location and performance of the optimal parameter vector are uncertain. A direct implication, of this alternative stance, is that every parameter vector is sampled only once. In our proposed approach, the spatial and performance uncertainties of the optimal parameter vector are resolved by the spatial clustering of candidate parameter vectors in the meta-design space. In a series of numerical experiments, considering 16 test problems, we show that our approach, Efficient Sequential Parameter Optimisation (ESPO), outperforms both F/Race and Sequential Parameter Optimisation (SPO), especially for tuning under restricted budgets.en_ZA
dc.description.departmentMechanical and Aeronautical Engineeringen_ZA
dc.description.embargo2019-09-01
dc.description.librarianhj2018en_ZA
dc.description.urihttp://www.elsevier.com/locate/asocen_ZA
dc.identifier.citationVogel, A.J. & Wilke, D.N. 2018, 'Spatially distributed statistical significance approach for real parameter tuning with restricted budgets', Applied Soft Computing, vol. 70, pp. 648-664.en_ZA
dc.identifier.issn1568-4946 (print)
dc.identifier.issn1872-9681 (online)
dc.identifier.other10.1016/j.asoc.2018.06.001
dc.identifier.urihttp://hdl.handle.net/2263/66800
dc.language.isoenen_ZA
dc.publisherElsevieren_ZA
dc.rights© 2018 Elsevier B.V. All rights reserved. Notice : this is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A definitive version was subsequently published in Applied Soft Computing, vol. 70, pp. 648-664, 2018. doi : 10.1016/j.asoc.2018.06.001.en_ZA
dc.subjectHeuristic algorithmsen_ZA
dc.subjectResponse surfacesen_ZA
dc.subjectRadial basis functionsen_ZA
dc.subjectSelectionen_ZA
dc.subjectFrameworken_ZA
dc.subjectOptimizationen_ZA
dc.subjectEvolutionary algorithmsen_ZA
dc.subjectEfficient sequential parameter optimisation (ESPO)en_ZA
dc.subjectSequential parameter optimisation (SPO)en_ZA
dc.subjectParticle swarm optimization (PSO)en_ZA
dc.subject.otherEngineering, built environment and information technology articles SDG-09
dc.subject.otherSDG-09: Industry, innovation and infrastructure
dc.subject.otherEngineering, built environment and information technology articles SDG-12
dc.subject.otherSDG-12: Responsible consumption and production
dc.subject.otherEngineering, built environment and information technology articles SDG-17
dc.subject.otherSDG-17: Partnerships for the goals
dc.titleSpatially distributed statistical significance approach for real parameter tuning with restricted budgetsen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vogel_Spatially_2018.pdf
Size:
3.98 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: