Evaluating the antimicrobial activity and cytotoxicity of polydopamine capped silver and silver/polydopamine core-shell nanocomposites
Loading...
Date
Authors
Shumbula, Ndivhuwo P.
Nkabinde, Siyabonga S.
Ndala, Zakhele B.
Mpelane, Siyasanga
Shumbula, Morgan P.
Mdluli, Phumlani S.
Njengele-Tetyana, Zikhona
Tetyana, Phumlani
Hlatshwayo, Thulani Thokozani
Mlambo, Mbuso
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Fabrication of bioactive nanomaterials with improved stability and low toxicity towards healthy mammalian cells have recently been a topic of interest. Bioactive metal nanomaterials such as silver nanoparticles (AgNPs) tend to lose their stability with time and become toxic to some extent, limiting their biological applications. AgNPs were separately encapsulated and loaded on the surface of a biocompatible polydopamine (PDA) to produce Ag-PDA and Ag@PDA nanocomposites to unravel the issue of agglomeration. PDA was coated through the self-polymerization of dopamine on the surface of AgNPs to produce Ag-PDA core-shells nanocomposites. For Ag@PDA, PDA spheres were first designed through self-polymerization of dopamine followed by in situ reduction of silver nitrate (AgNO3) without any reductant. AgNPs sizes were controlled by varying the concentration of AgNO3. The TEM micrograms showed monodispersed PDA spheres with an average diameter of 238 nm for Ag-PDA and Ag@PDA nanocomposites. Compared to Ag@PDA, Ag-PDA nanocomposites have shown insignificant toxicity towards human embryonic kidney (HEK-293T) and human dermal fibroblasts (HDF) cells with cell viability of over 95% at concentration of 250 µg/mL. A excellent antimicrobial activity of the nanocomposites was observed; with Ag@PDA possessing bactericidal effect at concentration as low as 12.5 µg/mL. Ag-PDA on the other hand were only found to be bacteriostatic against gram-positive and gram-negative bacteria was also observed.
Description
Keywords
Silver nanoparticles (AgNPs), Polydopamine, Nanocomposite, E. coli, S. aureus
Sustainable Development Goals
Citation
Shumbula, N.P., Nkabinde, S.S., Ndala, Z.B. et al. 2022, 'Evaluating the antimicrobial activity and cytotoxicity of polydopamine capped silver and silver/polydopamine core-shell nanocomposites', Arabian Journal of Chemistry, vol. 15, no. 6, art. 103798, pp. 1-13, doi : 10.1016/j.arabjc.2022.103798.