The division theorem for smooth functions

dc.contributor.advisorFouche, W.L.en
dc.contributor.emailupetd@up.ac.zaen
dc.contributor.postgraduateDe Wet, P.O. (Pieter Oloff)en
dc.date.accessioned2013-09-07T06:26:46Z
dc.date.available2005-07-26en
dc.date.available2013-09-07T06:26:46Z
dc.date.created2003-04-01en
dc.date.issued2006-07-26en
dc.date.submitted2005-07-22en
dc.descriptionDissertation (MSc (Mathematics))--University of Pretoria, 2006.en
dc.description.abstractWe discuss Lojasiewicz's beautiful proof of the division theorem for smooth functions. The standard proofs are based on the Weierstrass preparation theorem for analytic functions and use techniques from the theory of partial differential equations. Lojasiewicz's approach is more geometric and syn¬thetic. In the appendices appear new proofs of results which are required for the theorem.en
dc.description.availabilityunrestricteden
dc.description.departmentMathematics and Applied Mathematicsen
dc.identifier.citationDe Wet, PO 2002, The division theorem for smooth functions, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://hdl.handle.net/2263/26530 >en
dc.identifier.otherH735/agen
dc.identifier.upetdurlhttp://upetd.up.ac.za/thesis/available/etd-07222005-122154/en
dc.identifier.urihttp://hdl.handle.net/2263/26530
dc.language.isoen
dc.publisherUniversity of Pretoriaen_ZA
dc.rights© 2002, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.en
dc.subjectDifferential equations partialen
dc.subjectAnalytic functionsen
dc.subjectCommutative algebraen
dc.subjectSmoothness of functionsen
dc.subjectUCTDen_US
dc.titleThe division theorem for smooth functionsen
dc.typeDissertationen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dissertation.pdf
Size:
417.27 KB
Format:
Adobe Portable Document Format