Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density

dc.contributor.authorJansen van Rensburg, Gerhardus J.
dc.contributor.authorKok, Schalk
dc.contributor.authorWilke, Daniel Nicolas
dc.date.accessioned2018-09-03T08:20:29Z
dc.date.issued2018-03
dc.description.abstractThis paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented.en_ZA
dc.description.departmentMechanical and Aeronautical Engineeringen_ZA
dc.description.embargo2019-03-17
dc.description.librarianhj2018en_ZA
dc.description.urihttps://link.springer.com/journal/466en_ZA
dc.identifier.citationJansen van Rensburg, G.J., Kok, S. & Wilke, D.N. Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density. Computational Mechanics (2018). https://doi.org/10.1007/s00466-018-1568-7. NYP.en_ZA
dc.identifier.issn0178-7675 (print)
dc.identifier.issn1432-0924 (online)
dc.identifier.other10.1007/s00466-018-1568-7
dc.identifier.urihttp://hdl.handle.net/2263/66427
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2018. The original publication is available at : https://link.springer.com/journal/466.en_ZA
dc.subjectConstitutive behaviouren_ZA
dc.subjectMechanical threshold strengthen_ZA
dc.subjectElasto-viscoplastic materialen_ZA
dc.subjectAbaqus UMATen_ZA
dc.subjectUser material (UMAT)en_ZA
dc.subjectFinite element methoden_ZA
dc.subjectThreshold strengthen_ZA
dc.subjectNumerical implementationen_ZA
dc.subjectInternal state variablesen_ZA
dc.subjectFinite element formulationsen_ZA
dc.subjectDynamic recrystallisationen_ZA
dc.subjectThermal oil recoveryen_ZA
dc.subjectSubroutinesen_ZA
dc.subjectRecrystallization (metallurgy)en_ZA
dc.subjectCopperen_ZA
dc.titleModelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation densityen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JansenVanRensburg_Modelling_2018.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: