Predicting BRICS stock returns using ARFIMA models

dc.contributor.authorAye, Goodness Chioma
dc.contributor.authorBalcilar, Mehmet
dc.contributor.authorGupta, Rangan
dc.contributor.authorKilimani, Nicholas
dc.contributor.authorNakumuryango, Amandine
dc.contributor.authorRedford, Siobhan
dc.contributor.emailrangan.gupta@up.ac.zaen_US
dc.date.accessioned2014-07-31T08:19:54Z
dc.date.issued2014-09
dc.description.abstractThis article examines the existence of long memory in daily stock market returns from Brazil, Russia, India, China and South Africa (BRICS) countries and also attempts to shed light on the efficacy of autoregressive fractionally integrated moving average (ARFIMA) models in predicting stock returns. We present evidence which suggests that ARFIMA models estimated using a variety of estimation procedures yield better forecasting results than the non-ARFIMA (AR, MA, ARMA and GARCH) models with regard to prediction of stock returns. These findings hold consistently for the different countries whose economies differ in size, nature and sophistication.en_US
dc.description.embargo2016-02-27
dc.description.librarianhb2014en_US
dc.description.urihttp://www.tandfonline.com/loi/rafe20en_US
dc.identifier.citationAye, GC, Balcilar, M, Gupta, R, Kilimani, N, Nakumuryango, A & Redford, S 2014, 'Predicting BRICS stock returns using ARFIMA models', Applied Financial Economics, vol. 24, no. 17, pp. 1159-1166.en_US
dc.identifier.issn0960-3107 (print)
dc.identifier.issn1466-4305 (online)
dc.identifier.other10.1080/09603107.2014.924297
dc.identifier.urihttp://hdl.handle.net/2263/41029
dc.language.isoenen_US
dc.publisherRoutledgeen_US
dc.rights© Taylor and Francis. This is an electronic version of an article published in Applied financial economics, vol. 24, no. 17, pp. 1159-1166, 2014. doi : 10.1080/09603107.2014.924297. Applied financial economics is available online at : http://www.tandfonline.com/loi/rafe20.en_US
dc.subjectFractional integrationen_US
dc.subjectLong-memoryen_US
dc.subjectStock returnsen_US
dc.subjectLong-horizon predictionen_US
dc.subjectBrazil, Russia, India, China and South Africa (BRICS)en_US
dc.subjectAutoregressive fractionally integrated moving average (ARFIMA)en_US
dc.subjectARFIMA modelsen_US
dc.subjectBRICS countriesen_US
dc.titlePredicting BRICS stock returns using ARFIMA modelsen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aye_Predicting_2014.pdf
Size:
216.36 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: