Semi-parametric mixtures of partially linear models

dc.contributor.advisorMillard, Sollie M.
dc.contributor.coadvisorKanfer, F.H.J. (Frans)
dc.contributor.emailruan@inflect.co.zaen_US
dc.contributor.postgraduateDu Randt, Ruan Jean
dc.date.accessioned2023-02-10T13:30:23Z
dc.date.available2023-02-10T13:30:23Z
dc.date.created2023
dc.date.issued2022
dc.descriptionMini Dissertation (MSc (eScience))--University of Pretoria, 2022.en_US
dc.description.abstractThis mini-dissertation considers semi-parametric finite mixtures of partially linear models with Gaussian errors and focuses on the estimation procedure for such models. The semi-parametric structure allows for flexible modelling of the expected value of the response variable. These models are used in cases where the regression structure include both parametric and non-parametric covariate structures. We demonstrate the properties of the profile likelihood expectation maximisation algorithm (PL-EM) using a simulation study. The estimation algorithm is also demonstrated on real data. Overall, the estimation procedure is adequate in estimating the parameters of the mixtures of partially linear models from the results obtained in both the simulation study and the real-world application.en_US
dc.description.availabilityUnrestricteden_US
dc.description.degreeMSc (eScience)en_US
dc.description.departmentStatisticsen_US
dc.description.sponsorshipDSI-NICIS National e-Science Postgraduate Teaching and Training Platform (NEPTTP)en_US
dc.identifier.citation*en_US
dc.identifier.otherA2023
dc.identifier.urihttps://repository.up.ac.za/handle/2263/89418
dc.language.isoenen_US
dc.publisherUniversity of Pretoria
dc.rights© 2022 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subjectEM algorithmen_US
dc.subjectLocal kernel regression
dc.subjectNon-parametric
dc.subjectProfile likelihood
dc.subjectSemi-parametric
dc.subjectUCTD
dc.titleSemi-parametric mixtures of partially linear modelsen_US
dc.typeMini Dissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DuRandt_Parametric_2022.pdf
Size:
2.84 MB
Format:
Adobe Portable Document Format
Description:
Mini Dissertation

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: