Robust negative binomial regression via the Kibria-Lukman strategy : methodology and application

dc.contributor.authorLukman, Adewale F.
dc.contributor.authorAlbalawi, Olayan
dc.contributor.authorArashi, Mohammad
dc.contributor.authorAllohibi, Jeza
dc.contributor.authorAlharbi, Abdulmajeed Atiah
dc.contributor.authorFarghali, Rasha A.
dc.date.accessioned2025-02-12T04:57:44Z
dc.date.available2025-02-12T04:57:44Z
dc.date.issued2024-09-20
dc.descriptionSUPPLEMENTARY MATERIAL : We have included the code used for the real-life application to facilitate replication of our results.en_US
dc.descriptionDATA AVAILABILITY STATEMENT : The data will be made available upon request from the corresponding author.en_US
dc.description.abstractCount regression models, particularly negative binomial regression (NBR), are widely used in various fields, including biometrics, ecology, and insurance. Over-dispersion is likely when dealing with count data, and NBR has gained attention as an effective tool to address this challenge. However, multicollinearity among covariates and the presence of outliers can lead to inflated confidence intervals and inaccurate predictions in the model. This study proposes a comprehensive approach integrating robust and regularization techniques to handle the simultaneous impact of multicollinearity and outliers in the negative binomial regression model (NBRM). We investigate the estimators’ performance through extensive simulation studies and provide analytical comparisons. The simulation results and the theoretical comparisons demonstrate the superiority of the proposed robust hybrid KL estimator (M-NBKLE) with predictive accuracy and stability when multicollinearity and outliers exist. We illustrate the application of our methodology by analyzing a forestry dataset. Our findings complement and reinforce the simulation and theoretical results.en_US
dc.description.departmentStatisticsen_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-15:Life on landen_US
dc.description.sponsorshipIn part by the Iran National Science Foundation (INSF).en_US
dc.description.urihttps://www.mdpi.com/journal/mathematicsen_US
dc.identifier.citationLukman, A.F.; Albalawi, O.; Arashi, M.; Allohibi, J.; Alharbi, A.A.; Farghali, R.A. Robust Negative Binomial Regression via the Kibria–Lukman Strategy: Methodology and Application. Mathematics 2024, 12, 2929. https://DOI.org/10.3390/math12182929.en_US
dc.identifier.issn2227-7390
dc.identifier.other10.3390/math12182929
dc.identifier.urihttp://hdl.handle.net/2263/100750
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectMulticollinearityen_US
dc.subjectOutliersen_US
dc.subjectRegularizationen_US
dc.subjectRobust hybrid KL estimatoren_US
dc.subjectOver-dispersionen_US
dc.subjectNegative binomial regression (NBR)en_US
dc.subjectSDG-15: Life on landen_US
dc.titleRobust negative binomial regression via the Kibria-Lukman strategy : methodology and applicationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Lukman_Robust_2024.pdf
Size:
859.54 KB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Lukman_RobustSuppl_2024.pdf
Size:
84.68 KB
Format:
Adobe Portable Document Format
Description:
Supplementary Material 1

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: