Reliable numerical schemes for a linear difusion equation on a nonsmooth domain
| dc.contributor.author | Chin, P.W.M. (Pius Wiysanyuy Molo) | |
| dc.contributor.author | Djoko, J.K. (Jules Kamdem) | |
| dc.contributor.author | Lubuma, Jean M.-S. | |
| dc.contributor.email | jean.lubuma@up.ac.za | en_US |
| dc.date.accessioned | 2011-04-28T07:10:44Z | |
| dc.date.available | 2011-04-28T07:10:44Z | |
| dc.date.issued | 2010-05 | |
| dc.description.abstract | The solution of a linear reaction–diffusion equation on a non-convex polygon is proved to be globally regular in a suitable weighted Sobolev space. This result is used to design an optimally convergent Fourier-Finite Element Method (FEM) where the mesh size is suitably refined. Furthermore, the coupled Non-Standard Finite Difference Method (NSFDM)-FEM is presented as a reliable scheme that replicates the essential properties of the exact solution. | en |
| dc.description.sponsorship | International Center for Theoretical Physics, (Italy). | en_US |
| dc.identifier.citation | Chin, PWM, Djoko, JK & Lubuma, JMS 2010, 'Reliable numerical schemes for a linear difusion', Applied Mathematics Letters, vol. 23, no. 5, pp. 544-548. [www.elsevier.com/locate/aml] | en |
| dc.identifier.issn | 0893-9659 | |
| dc.identifier.issn | 1873-5452 (online) | |
| dc.identifier.other | 10.1016/j.aml.2010.01.008 | |
| dc.identifier.uri | http://hdl.handle.net/2263/16371 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | © 2010 Elsevier Ltd. All rights reserved. | en_US |
| dc.subject | Singularity | en |
| dc.subject | Regularity | en |
| dc.subject | Non-standard finite difference method | en |
| dc.subject.lcsh | Heat equation | en |
| dc.subject.lcsh | Fourier series | en |
| dc.subject.lcsh | Finite element method | en |
| dc.title | Reliable numerical schemes for a linear difusion equation on a nonsmooth domain | en |
| dc.type | Postprint Article | en |
