Reliable numerical schemes for a linear difusion equation on a nonsmooth domain

dc.contributor.authorChin, P.W.M. (Pius Wiysanyuy Molo)
dc.contributor.authorDjoko, J.K. (Jules Kamdem)
dc.contributor.authorLubuma, Jean M.-S.
dc.contributor.emailjean.lubuma@up.ac.zaen_US
dc.date.accessioned2011-04-28T07:10:44Z
dc.date.available2011-04-28T07:10:44Z
dc.date.issued2010-05
dc.description.abstractThe solution of a linear reaction–diffusion equation on a non-convex polygon is proved to be globally regular in a suitable weighted Sobolev space. This result is used to design an optimally convergent Fourier-Finite Element Method (FEM) where the mesh size is suitably refined. Furthermore, the coupled Non-Standard Finite Difference Method (NSFDM)-FEM is presented as a reliable scheme that replicates the essential properties of the exact solution.en
dc.description.sponsorshipInternational Center for Theoretical Physics, (Italy).en_US
dc.identifier.citationChin, PWM, Djoko, JK & Lubuma, JMS 2010, 'Reliable numerical schemes for a linear difusion', Applied Mathematics Letters, vol. 23, no. 5, pp. 544-548. [www.elsevier.com/locate/aml]en
dc.identifier.issn0893-9659
dc.identifier.issn1873-5452 (online)
dc.identifier.other10.1016/j.aml.2010.01.008
dc.identifier.urihttp://hdl.handle.net/2263/16371
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2010 Elsevier Ltd. All rights reserved.en_US
dc.subjectSingularityen
dc.subjectRegularityen
dc.subjectNon-standard finite difference methoden
dc.subject.lcshHeat equationen
dc.subject.lcshFourier seriesen
dc.subject.lcshFinite element methoden
dc.titleReliable numerical schemes for a linear difusion equation on a nonsmooth domainen
dc.typePostprint Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chin_Reliable(2010).PDF
Size:
266.18 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.44 KB
Format:
Item-specific license agreed upon to submission
Description: