Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer : a report of the international immuno-oncology biomarker working group on breast cancer

dc.contributor.authorThagaard, Jeppe
dc.contributor.authorBroeckx, Glenn
dc.contributor.authorPage, David B.
dc.contributor.authorJahangir, Chowdhury Arif
dc.contributor.authorVerbandt, Sara
dc.contributor.authorKos, Zuzana
dc.contributor.authorGupta, Rajarsi R.
dc.contributor.authorKhiroya, Reena
dc.contributor.authorAbduljabbar, Khalid
dc.contributor.authorHaab, Gabriela Acosta
dc.contributor.authorAcs, Balazs
dc.contributor.authorAkturk, Guray
dc.contributor.authorAlmeida, Jonas S.
dc.contributor.authorAlvarado‐Cabrero, Isabel
dc.contributor.authorAmgad, Mohamed
dc.contributor.authorAzmoudeh‐Ardalan, Farid
dc.contributor.authorBadve, Sunil
dc.contributor.authorBaharun, Nurkhairul Bariyah
dc.contributor.authorBalslev, Eva
dc.contributor.authorBellolio, Enrique R.
dc.contributor.authorBheemaraju, Vydehi
dc.contributor.authorBlenman, Kim R.M.
dc.contributor.authorBotinelly Mendonça Fujimoto, Luciana
dc.contributor.authorBouchmaa, Najat
dc.contributor.authorBurgues, Octavio
dc.contributor.authorChardas, Alexandros
dc.contributor.authorCheang, Maggie Chon U.
dc.contributor.authorCiompi, Francesco
dc.contributor.authorCooper, Lee A.D.
dc.contributor.authorCoosemans, M.
dc.contributor.authorCorredor, German
dc.contributor.authorDahl, Anders B.
dc.contributor.authorDantas Portela, Flavio Luis
dc.contributor.authorDeman, Frederik
dc.contributor.authorDemaria, Sandra
dc.contributor.authorHansen, Johan Dore
dc.contributor.authorDudgeon, Sarah N.
dc.contributor.authorEbstrup, Thomas
dc.contributor.authorElghazawy, Mahmoud
dc.contributor.authorFernandez‐Martín, Claudio
dc.contributor.authorFox, Stephen B.
dc.contributor.authorGallagher, William M.
dc.contributor.authorGiltnane, Jennifer M.
dc.contributor.authorGnjatic, Sacha
dc.contributor.authorGonzalez‐Ericsson, Paula I.
dc.contributor.authorGrigoriadis, Anita
dc.contributor.authorHalama, Niels
dc.contributor.authorHanna, Matthew G.
dc.contributor.authorHarbhajanka, Aparna
dc.contributor.authorHart, Steven N.
dc.contributor.authorHartman, Johan
dc.contributor.authorHauberg, Søren
dc.contributor.authorHewitt, Stephen
dc.contributor.authorHida, Akira I.
dc.contributor.authorHorlings, Hugo M.
dc.contributor.authorHusain, Zaheed
dc.contributor.authorHytopoulos, Evangelos
dc.contributor.authorIrshad, Sheeba
dc.contributor.authorJanssen, Emiel A.M.
dc.contributor.authorKahila, Mohamed
dc.contributor.authorKataoka, Tatsuki R.
dc.contributor.authorKawaguchi, Kosuke
dc.contributor.authorKharidehal, Durga
dc.contributor.authorKhramtsov, Andrey I.
dc.contributor.authorKiraz, Umay
dc.contributor.authorKirtani, Pawan
dc.contributor.authorKodach, Liudmila L.
dc.contributor.authorKorski, Konstanty
dc.contributor.authorKovacs, Aniko
dc.contributor.authorLaenkholm, Anne‐Vibeke
dc.contributor.authorLang‐Schwarz, Corinna
dc.contributor.authorLarsimont, Denis
dc.contributor.authorLennerz, Jochen K.
dc.contributor.authorLerousseau, Marvin
dc.contributor.authorLi, Xiaoxian
dc.contributor.authorLy, Amy
dc.contributor.authorMadabhushi, Anant
dc.contributor.authorMaley, Sai K.
dc.contributor.authorManur Narasimhamurthy, Vidya
dc.contributor.authorMarks, Douglas K.
dc.contributor.authorMcDonald, Elizabeth S.
dc.contributor.authorMehrotra, Ravi
dc.contributor.authorMichiels, Stefan
dc.contributor.authorMinhas, Fayyaz ul Amir Afsar
dc.contributor.authorMittal, Shachi
dc.contributor.authorMoore, David A.
dc.contributor.authorMushtaq, Shamim
dc.contributor.authorNighat, Hussain
dc.contributor.authorPapathomas, Thomas
dc.contributor.authorPenault‐Llorca, Frederique
dc.contributor.authorPerera, Rashindrie D.
dc.contributor.authorPinard, Christopher J.
dc.contributor.authorPinto‐Cardenas, Juan Carlos
dc.contributor.authorPruneri, Giancarlo
dc.contributor.authorPusztai, Lajos
dc.contributor.authorRahman, Arman
dc.contributor.authorRajpoot, Nasir Mahmood
dc.contributor.authorRapoport, Bernardo Leon
dc.contributor.authorRau, Tilman T.
dc.contributor.authorReis‐Filho, Jorge S.
dc.contributor.authorRibeiro, Joana M.
dc.contributor.authorRimm, David
dc.contributor.authorRoslind, Anne
dc.contributor.authorVincent-Salomon, Anne
dc.contributor.authorSalto‐Tellez, Manuel
dc.contributor.authorSaltz, Joel
dc.contributor.authorSayed, Shahin
dc.contributor.authorScott, Ely
dc.contributor.authorSiziopikou, Kalliopi P.
dc.contributor.authorSotiriou, Christos
dc.contributor.authorStenzinger, Albrecht
dc.contributor.authorSughayer, Maher A.
dc.contributor.authorSur, Daniel
dc.contributor.authorFineberg, Susan
dc.contributor.authorSymmans, Fraser
dc.contributor.authorTanaka, Sunao
dc.contributor.authorTaxter, Timothy
dc.contributor.authorTejpar, Sabine
dc.contributor.authorTeuwen, Jonas
dc.contributor.authorThompson, E. Aubrey
dc.contributor.authorTramm, Trine
dc.contributor.authorTran, William T.
dc.contributor.authorVan der Laak, Jeroen
dc.contributor.authorVan Diest, Paul J.
dc.contributor.authorVerghese, Gregory E.
dc.contributor.authorViale, Giuseppe
dc.contributor.authorVieth, Michael
dc.contributor.authorWahab, Noorul
dc.contributor.authorWalter, Thomas
dc.contributor.authorWaumans, Yannick
dc.contributor.authorWen, Hannah Y.
dc.contributor.authorYang, Wentao
dc.contributor.authorYuan, Yinyin
dc.contributor.authorMd Zin, Reena
dc.contributor.authorAdams, Sylvia
dc.contributor.authorBartlett, John
dc.contributor.authorLoibl, Sibylle
dc.contributor.authorDenkert, Carsten
dc.contributor.authorSavas, Peter
dc.contributor.authorLoi, Sherene
dc.contributor.authorSalgado, Roberto
dc.contributor.authorStovgaard, Elisabeth Specht
dc.date.accessioned2024-10-18T10:50:19Z
dc.date.available2024-10-18T10:50:19Z
dc.date.issued2023-08-23
dc.description.abstractThe clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer.en_US
dc.description.departmentImmunologyen_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-03:Good heatlh and well-beingen_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sponsorshipGilead Breast Cancer Research Grant; Internal Funds KU Leuven; Swedish Society for Medical Research; Swedish Breast Cancer Association; Peer Reviewed Cancer Research Program; US Department of Defense; Mayo Clinic Breast Cancer SPORE grant; Horizon 2020 European Union Research and Innovation Programme; NHMRC; Shared Island Fund; Irish Cancer Society; Science Foundation Ireland Investigator Programme; Science Foundation Ireland Strategic Partnership Programme; National Institutes of Health; Cancer Research UK; Japan Society for the Promotion of Science; Marie Sklodowska Curie Grant; National Cancer Institute.; National Heart, Lung and Blood Institute; National Institute of Biomedical Imaging and Bioengineering; US Department of Veterans Affairs Biomedical Laboratory Research; Breast Cancer Research Program; Prostate Cancer Research Program; Lung Cancer Research Program; Kidney Precision Medicine Project; EPSRC; ARC, La Ligue contre le Cancer; Melbourne Research Scholarship; Peter MacCallum Cancer Centre; Dutch Cancer Society and the Dutch Ministry of Health, Welfare and Sport Breast Cancer Research Foundation; Breast Cancer Now; Agence Nationale de la Recherche; National Breast Cancer Foundation of Australia; National Health and Medical Council of Australia.en_US
dc.description.urihttps://pathsocjournals.onlinelibrary.wiley.com/journal/10969896en_US
dc.identifier.citationThagaard, J., Broeckx, G., Page, C.B. et al. 2023, 'Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer : a report of the international immuno-oncology biomarker working group on breast cancer', Journal of Pathology, vol. 260, pp. 498-513. DOI: 10.1002/path.6155en_US
dc.identifier.issn0022-4480 (print)
dc.identifier.issn1477-8556 (online)
dc.identifier.other10.1002/path.6155
dc.identifier.urihttp://hdl.handle.net/2263/98670
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rights© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.en_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectDigital pathologyen_US
dc.subjectGuidelinesen_US
dc.subjectImage analysisen_US
dc.subjectPitfallsen_US
dc.subjectPrognostic biomarkeren_US
dc.subjectTriple-negative breast canceren_US
dc.subjectTumor-infiltrating lymphocytesen_US
dc.subjectSDG-03: Good health and well-beingen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.subjectTumor-infiltrating lymphocytes (TILs)en_US
dc.titlePitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer : a report of the international immuno-oncology biomarker working group on breast canceren_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thagaard_Pitfalls_2023.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: