Inertial subgradient extragradient methods for solving variational inequality problems and fixed point problems

dc.contributor.authorOkeke, Godwin Amechi
dc.contributor.authorAbbas, Mujahid
dc.contributor.authorDe la Sen, Manuel
dc.date.accessioned2020-10-15T04:34:26Z
dc.date.available2020-10-15T04:34:26Z
dc.date.issued2020-06
dc.description.abstractWe propose two new iterative algorithms for solving K-pseudomonotone variational inequality problems in the framework of real Hilbert spaces. These newly proposed methods are obtained by combining the viscosity approximation algorithm, the Picard Mann algorithm and the inertial subgradient extragradient method. We establish some strong convergence theorems for our newly developed methods under certain restriction. Our results extend and improve several recently announced results. Furthermore, we give several numerical experiments to show that our proposed algorithms performs better in comparison with several existing methods.en_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.librarianpm2020en_ZA
dc.description.sponsorshipBasque Governmenten_ZA
dc.description.urihttp://www.mdpi.com/journal/axiomsen_ZA
dc.identifier.citationOkeke, G.A., Abbas, M. & De la Sen, M. 2020, 'Inertial subgradient extragradient methods for solving variational inequality problems and fixed point problems', Axioms, vol. 9, no. 2, art. 51, pp. 1-24.en_ZA
dc.identifier.issn2075-1680 (online)
dc.identifier.other10.3390/axioms9020051
dc.identifier.urihttp://hdl.handle.net/2263/76478
dc.language.isoenen_ZA
dc.publisherMDPIen_ZA
dc.rights© 2020 by the authors. Licensee : MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_ZA
dc.subjectK-pseudomonotoneen_ZA
dc.subjectInertial iterative algorithmsen_ZA
dc.subjectVariational inequality problemsen_ZA
dc.subjectHilbert spacesen_ZA
dc.subjectStrong convergenceen_ZA
dc.titleInertial subgradient extragradient methods for solving variational inequality problems and fixed point problemsen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Okeke_Inertial_2020.pdf
Size:
410.55 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: