Meta-analysis of 32 genome-wide linkage studies of schizophrenia

dc.contributor.authorNg, M.Y.M.
dc.contributor.authorLevinson, D.F.
dc.contributor.authorFaraone, S.V.
dc.contributor.authorSuarez, B.K.
dc.contributor.authorDeLisi, L.E.
dc.contributor.authorArinami, T.
dc.contributor.authorRiley, B.
dc.contributor.authorPaunio, T.
dc.contributor.authorPulver, A.E.
dc.contributor.authorIrmansya
dc.contributor.authorHolmans, P.A.
dc.contributor.authorEscamilla, M.
dc.contributor.authorWildenauer, D.B.
dc.contributor.authorWilliams, Neal M.
dc.contributor.authorLaurent, Claude
dc.contributor.authorMowry, B.J.
dc.contributor.authorBrzustowicz, L.M.
dc.contributor.authorMaziade, M.
dc.contributor.authorSklar, P.
dc.contributor.authorGarver, D.L.
dc.contributor.authorAbecasis, G.R.
dc.contributor.authorLerer, B.
dc.contributor.authorFallin, M.D.
dc.contributor.authorGurling, H.M.D.
dc.contributor.authorGejman, P.V.
dc.contributor.authorLindholm, E.
dc.contributor.authorMoises, H.W.
dc.contributor.authorByerley, W.
dc.contributor.authorWijsman, E.M.
dc.contributor.authorForaboso, P.
dc.contributor.authorTsuang, M.T.
dc.contributor.authorHwu, H-G.
dc.contributor.authorOkazaki, Y.
dc.contributor.authorKendler, K.S.
dc.contributor.authorWormley, B.
dc.contributor.authorFanous, A.
dc.contributor.authorWalsh, D.
dc.contributor.authorO'Neill, F.A.
dc.contributor.authorPeltonen, L.
dc.contributor.authorNestadt, G.
dc.contributor.authorLasseter, V.K.
dc.contributor.authorLiang, K.Y.
dc.contributor.authorPapadimitriou, G.M.
dc.contributor.authorDikeos, D.G.
dc.contributor.authorSchwab, S.G.
dc.contributor.authorOwen, M.J.
dc.contributor.authorO'Donovan, M.C.
dc.contributor.authorNorton, N.
dc.contributor.authorHare, E.
dc.contributor.authorRaventos, H.
dc.contributor.authorNicolini, H.
dc.contributor.authorAlbus, M.
dc.contributor.authorMaier, W.
dc.contributor.authorNimgaonkar, V.L.
dc.contributor.authorTerenius, L.
dc.contributor.authorMallet, J.
dc.contributor.authorJay, M.
dc.contributor.authorGodard, S.
dc.contributor.authorNertney, D.
dc.contributor.authorAlexander, M.
dc.contributor.authorCrowe, R.R.
dc.contributor.authorSilverman, J.M.
dc.contributor.authorBasset, A.S.
dc.contributor.authorRoy, M-A.
dc.contributor.authorMerette, C.
dc.contributor.authorPato, C.N.
dc.contributor.authorPato, M.T.
dc.contributor.authorRoos, J.L. (Johannes Louw)
dc.contributor.authorKohn, Y.
dc.contributor.authorAmann-Zalcenstein, D.
dc.contributor.authorKalsi, G.
dc.contributor.authorMcQuillin, A.
dc.contributor.authorCurtis, D.
dc.contributor.authorBrynjolfson, J.
dc.contributor.authorSigmundsson, T.
dc.contributor.authorPetursson, H.
dc.contributor.authorSanders, A.R.
dc.contributor.authorDuan, J.
dc.contributor.authorJazin, E.
dc.contributor.authorMyles-Worsley, M.
dc.contributor.authorKarayiorgou, Maria
dc.contributor.authorLewis, C.M.
dc.date.accessioned2010-04-07T06:21:12Z
dc.date.available2010-04-07T06:21:12Z
dc.date.issued2009-08
dc.description.abstractA genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genomewide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p 16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.en
dc.identifier.citationNg, MYM, Levinson, DF, Faraone, SV et al, 2009, 'Meta-analysis of 32 genome-wide linkage studies of schizophrenia', Molecular Psychiatry, vol. 14, no. 8, pp .774-85. [http://www.nature.com/mp/index.html]en
dc.identifier.issn1476-5578
dc.identifier.other10.1038/mp.2008.135
dc.identifier.urihttp://hdl.handle.net/2263/13816
dc.language.isoenen
dc.publisherNature Publishing Groupen
dc.rights© 2008 Nature Publishing Groupen
dc.subjectGenetic predispositionen
dc.subject.lcshGenomicsen
dc.subject.lcshHuman geneticsen
dc.subject.lcshHuman genomeen
dc.subject.lcshSchizophrenia -- Susceptibilityen
dc.subject.lcshMeta-analysisen
dc.subject.lcshLinkage (Genetics)en
dc.titleMeta-analysis of 32 genome-wide linkage studies of schizophreniaen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ng_Meta-analysis(2009).pdf
Size:
3.09 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.43 KB
Format:
Item-specific license agreed upon to submission
Description: