A maximum likelihood estimation approach for spliced distributions obtained through quantile splicing

dc.contributor.advisorOtieno Mac'Oduol, Brenda
dc.contributor.coadvisorVan Staden, Paul J.
dc.contributor.emailjeannelouisev9@gmail.comen_US
dc.contributor.postgraduateVan der Sande, Jeanne-Louise
dc.date.accessioned2023-02-13T13:45:50Z
dc.date.available2023-02-13T13:45:50Z
dc.date.created2023-04
dc.date.issued2022-11-30
dc.descriptionMini Dissertation (MSc (Advanced Data Analytics))--University of Pretoria, 2022.en_US
dc.description.abstractThis mini-dissertation proposes constructing a family of spliced distributions at a point different from the median, hence k=1/4 instead of k=1/2, using the method of quantile splicing proposed by Mac'Oduol et al. (2020). General results of these families of distributions are developed and the maximum likelihood approach is explored and investigated for estimation purposes. Moreover, a numerical application is presented in order to illustrate the implementation and application of the proposed method.en_US
dc.description.availabilityUnrestricteden_US
dc.description.degreeMSc (Advanced Data Analytics)en_US
dc.description.departmentStatisticsen_US
dc.identifier.citation*en_US
dc.identifier.otherA2023
dc.identifier.urihttps://repository.up.ac.za/handle/2263/89460
dc.language.isoenen_US
dc.publisherUniversity of Pretoria
dc.rights© 2022 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subjectTwo-piece distributionen_US
dc.subjectQuantile splicingen_US
dc.subjectl-momenten_US
dc.subjectMaximum likelihood estimation (MLE)en_US
dc.subjectQuantile-based distributionsen_US
dc.subjectUCTD
dc.titleA maximum likelihood estimation approach for spliced distributions obtained through quantile splicingen_US
dc.typeMini Dissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VanderSande_Maximum_2022.pdf
Size:
2.73 MB
Format:
Adobe Portable Document Format
Description:
Mini Dissertation

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: