Coot bird algorithms based tuning PI controller for optimal microgrid autonomous operation

dc.contributor.authorHussein, Ahmed Moreab
dc.contributor.authorTurky, Rania A.
dc.contributor.authorAlkuhayli, Abdulaziz
dc.contributor.authorHasanien, Hany M.
dc.contributor.authorTostado Veliz, Marcos
dc.contributor.authorJurado, Francisco
dc.contributor.authorBansal, Ramesh C.
dc.date.accessioned2022-11-22T11:12:20Z
dc.date.available2022-11-22T11:12:20Z
dc.date.issued2022-01-13
dc.description.abstractThis paper develops a novel methodology for optimal control of islanded microgrids (MGs) based on the coot bird metaheuristic optimizer (CBMO). To this end, the optimum gains for the PI controller are found using the CBMO under a multi-objective optimization framework. The Response Surface Methodology (RSM) is incorporated into the developed procedure to achieve a compromise solution among the different objectives. To prove the effectiveness of the new proposal, a benchmark MG is tested under various scenarios, 1) isolate the system from the grid (autonomous mode), 2) islanded system exposure to load changes, and 3) islanded system exposure to a 3 phase fault. Extensive simulations are performed to validate the new method taking conventional data from PSCAD/EMTDC software. The validity of the suggested optimizer is proved by comparing its results with that achieved using the LMSRE-based adaptive control, sunflower optimization algorithm (SFO), Ziegler-Nichols method and the particle swarm optimization (PSO) techniques. The article shows the superiority of the suggested CBMO over the LMSRE-based adaptive control, SFO, Ziegler-Nichols and the PSO techniques in the transient responses of the system.en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.description.sponsorshipThe Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia.en_US
dc.description.urihttps://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639en_US
dc.identifier.citationHussien, A.M., Turky, R.A., Alkuhayli, A., Hasanien, H. et al. "Coot Bird Algorithms Based Tuning PI Controller for Optimal Microgrid Autonomous Operation" in IEEE Access, vol. 10, pp. 6442-6458, 2022, doi: 10.1109/ACCESS.2022.3142742.en_US
dc.identifier.issn2169-3536 (online)
dc.identifier.other10.1109/ACCESS.2022.3142742
dc.identifier.urihttps://repository.up.ac.za/handle/2263/88425
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en_US
dc.subjectOptimal controlen_US
dc.subjectMicrogriden_US
dc.subjectCoot bird metaheuristic optimizer (CBMO)en_US
dc.subjectPI controlleren_US
dc.subjectPower system stabilityen_US
dc.subjectAdaptive controlen_US
dc.subjectElectrical engineeringen_US
dc.subjectBirdsen_US
dc.subjectTransient analysisen_US
dc.titleCoot bird algorithms based tuning PI controller for optimal microgrid autonomous operationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hussein_Coot_2022.pdf
Size:
7.41 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: