Estimating ore particle size distribution using a deep convolutional neural network

dc.contributor.authorOlivier, Laurentz Eugene
dc.contributor.authorMaritz, M.G. (Michael)
dc.contributor.authorCraig, Ian Keith
dc.contributor.emailian.craig@up.ac.zaen_ZA
dc.date.accessioned2021-07-28T09:45:06Z
dc.date.available2021-07-28T09:45:06Z
dc.date.issued2020
dc.description.abstractIn this work the ore particle size distribution is estimated from an input image of the ore. The normalized weight of ore in each of 10 size classes is reported with good accuracy. A deep convolutional neural network, making use of the VGG16 architecture, is deployed for this task. The goal of using this method is to achieve accurate results without the need for rigorous parameter selection, as is needed with traditional computer vision approaches to this problem. The feed ore particle size distribution has an impact on the performance and control of minerals processing operations. When the ore size distribution undergoes significant changes, operational intervention is usually required (either by the operator or by an automatic controller).en_ZA
dc.description.departmentElectrical, Electronic and Computer Engineeringen_ZA
dc.description.librarianpm2021en_ZA
dc.description.sponsorshipThe National Research Foundation of South Africaen_ZA
dc.description.urihttps://www.journals.elsevier.com/ifac-papersonlineen_ZA
dc.identifier.citationOlivier, L.E., Maritz, M.G. & Craig, I.K. 2020, 'Estimating ore particle size distribution using a deep convolutional neural network', IFAC-PapersOnLine, vol. 53, no. 2. pp. 12038–12043.en_ZA
dc.identifier.issn2405-8963 (online)
dc.identifier.other10.1016/j.ifacol.2020.12.740
dc.identifier.urihttp://hdl.handle.net/2263/81017
dc.language.isoenen_ZA
dc.publisherElsevieren_ZA
dc.rights© 2020 The Authors. This is an open access article under the CC BY-NC-ND license.en_ZA
dc.subjectDeep learningen_ZA
dc.subjectConvolutional neural networken_ZA
dc.subjectImage analysisen_ZA
dc.subjectMinerals processingen_ZA
dc.subjectNeural regressionen_ZA
dc.titleEstimating ore particle size distribution using a deep convolutional neural networken_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Olivier_Estimating_2020.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: