Estimation of tail parameters with missing largest observations

dc.contributor.authorBeirlant, Jan
dc.contributor.authorBladt, Martin
dc.contributor.authorMaribe, Gaonyalelwe
dc.contributor.authorVerster, Andrehette
dc.date.accessioned2024-07-25T10:19:25Z
dc.date.available2024-07-25T10:19:25Z
dc.date.issued2023
dc.description.abstractThe setting where an unknown number m of the largest data is missing from an underlying Pareto-type distribution is considered. Solutions are provided for estimating the extreme value index, the number of missing data and extreme quantiles. Asymptotic results of the parameter estimators and an adaptive selection method for the number of top data used in the estimation are proposed for the case where all missing data are beyond the observed data. An estimator of the number of missing extremes spread over the largest observed data is also proposed. To this purpose, a key component is a likelihood solution based on exponential representations of spacings between the largest observations. An effective and fast optimization procedure is established using regularization, and simulation experiments are provided. The methodology is illustrated with a dataset from the diamond mining industry, where large-carat diamonds are expected to be missing.en_US
dc.description.departmentStatisticsen_US
dc.description.librarianam2024en_US
dc.description.sdgNoneen_US
dc.description.urihttps://imstat.org/journals-and-publications/electronic-journal-of-statisticsen_US
dc.identifier.citationBeirlant, J., Bladt, M., Maribe, G . et al. 2023, 'Estimation of tail parameters with missing largest observations', Electronic Journal of Statistics, vol. 17, no. 2, pp. 3728-3761. https://DOI.org/10.1214/23-EJS2191.en_US
dc.identifier.other1935-7524
dc.identifier.other10.1214/23-EJS2191
dc.identifier.urihttp://hdl.handle.net/2263/97251
dc.language.isoenen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.rights© 2024 Institute of Mathematical Statistics.en_US
dc.subjectExtreme value indexen_US
dc.subjectHigh quantilesen_US
dc.subjectMissing observationsen_US
dc.subjectRegularizationen_US
dc.titleEstimation of tail parameters with missing largest observationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Beirlant_Estimation_2023.pdf
Size:
4.97 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: