Bayesian inference for stochastic cusp catastrophe model with partially observed data

dc.contributor.authorChen, Ding-Geng (Din)
dc.contributor.authorGao, Haipeng
dc.contributor.authorJi, Chuanshu
dc.date.accessioned2022-09-15T12:05:37Z
dc.date.available2022-09-15T12:05:37Z
dc.date.issued2021-12-15
dc.description.abstractThe purpose of this paper is to develop a data augmentation technique for statistical inference concerning stochastic cusp catastrophe model subject to missing data and partially observed observations. We propose a Bayesian inference solution that naturally treats missing observations as parameters and we validate this novel approach by conducting a series of Monte Carlo simulation studies assuming the cusp catastrophe model as the underlying model. We demonstrate that this Bayesian data augmentation technique can recover and estimate the underlying parameters from the stochastic cusp catastrophe model.en_US
dc.description.departmentStatisticsen_US
dc.description.librarianam2022en_US
dc.description.sponsorshipSouth Africa DST-NRF-SAMRC SARChI Research Chair in Biostatistics.en_US
dc.description.urihttps://www.mdpi.com/journal/mathematicsen_US
dc.identifier.citationChen, D.-G.; Gao, H.; Ji, C. Bayesian Inference for Stochastic Cusp Catastrophe Model with Partially Observed Data. Mathematics 2021, 9, 3245. https://DOI.org/10.3390/math9243245.en_US
dc.identifier.issn2227-7390
dc.identifier.other10.3390/math9243245
dc.identifier.urihttps://repository.up.ac.za/handle/2263/87205
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectCusp catastrophe modelen_US
dc.subjectStochastic differential equationen_US
dc.subjectTransition densityen_US
dc.subjectBayesian inferenceen_US
dc.subjectData augmentationen_US
dc.subjectHamiltonian Monte Carloen_US
dc.titleBayesian inference for stochastic cusp catastrophe model with partially observed dataen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chen_Bayesian_2021.pdf
Size:
426.34 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: