Embedding a Latin square with transversal into a projective space
dc.contributor.author | Pretorius, Lou M. (Lourens Martin) | |
dc.contributor.author | Swanepoel, Konrad Johann | |
dc.contributor.email | lou.pretorius@up.ac.za | en_US |
dc.date.accessioned | 2011-03-03T06:25:55Z | |
dc.date.available | 2011-03-03T06:25:55Z | |
dc.date.issued | 2011-07 | |
dc.description.abstract | A Latin square of side n defines in a natural way a finite geometry on 3n points, with three lines of size n and n2 lines of size 3. A Latin square of side n with a transversal similarly defines a finite geometry on 3n+1 points, with three lines of size n, n2−n lines of size 3, and n concurrent lines of size 4. A collection of k mutually orthogonal Latin squares defines a geometry on kn points, with k lines of size n and n2 lines of size k. Extending the work of Bruen and Colbourn [A.A. Bruen, C.J. Colbourn, Transversal designs in classical planes and spaces, J. Combin. Theory Ser. A 92 (2000) 88–94], we characterise embeddings of these finite geometries into projective spaces over skew fields. | en |
dc.identifier.citation | L.M. Pretorius, K.J. Swanepoel, Embedding a Latin square with transversal into a projective space, Journal of Combinatorial Theory, Series A, vol. 118, no. 5, pp. 1674-1683 (2011) doi:10.1016/j.jcta.2011.01.013 | en_US |
dc.identifier.issn | 0097-3165 | |
dc.identifier.other | 10.1016/j.jcta.2011.01.013 | |
dc.identifier.uri | http://hdl.handle.net/2263/15954 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | © 2010 Elsevier Inc. All rights reserved. | en_US |
dc.subject | Latin squares and rectangles | en |
dc.subject | Desarguesian projective plane | en |
dc.subject | Finite geometry | en |
dc.subject | Transversal | en |
dc.subject | MOLS | en |
dc.subject.lcsh | Magic squares | en |
dc.subject.lcsh | Projective spaces | en |
dc.title | Embedding a Latin square with transversal into a projective space | en |
dc.type | Postprint Article | en |