Using sequential deviation to dynamically determine the number of clusters found by a local network neighbourhood artificial immune system

dc.contributor.authorGraaff, A.J. (Alexander Jakobus)
dc.contributor.authorEngelbrecht, Andries P.
dc.date.accessioned2011-06-20T16:04:26Z
dc.date.available2011-06-20T16:04:26Z
dc.date.issued2011-03
dc.description.abstractMany of the existing network theory based artificial immune systems have been applied to data clustering. The formation of artificial lymphocyte (ALC) networks represents potential clusters in the data. Although these models do not require any user specified parameter of the number of required clusters to cluster the data, these models do have a drawback in the techniques used to determine the number of ALC networks. This paper discusses the drawbacks of these techniques and proposes two alternative techniqueswhich can be used with the local network neighbourhood artificial immune system. The end result is an enhanced model that can dynamically determine the number of clusters in a data set.en_US
dc.identifier.citationGraaff, AJ & Engelbrecht, AP 2011, 'Using sequential deviation to dynamically determine the number of clusters found by a local network neighbourhood artificial immune system', Applied Soft Computing, vol. 11, no. 2, pp. 2698-2713. [http://www.elsevier.com/locate/asoc]en_US
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681 (online)
dc.identifier.other10.1016/j.asoc.2010.10.017
dc.identifier.urihttp://hdl.handle.net/2263/16871
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2010 Elsevier B.V. All rights reserved.en_US
dc.subjectDynamic clusteringen_US
dc.subjectSequential deviation detectionen_US
dc.subjectImmune networksen_US
dc.subjectClustering performance measuresen_US
dc.titleUsing sequential deviation to dynamically determine the number of clusters found by a local network neighbourhood artificial immune systemen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Graaff_Using(2011).PDF
Size:
788.99 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.44 KB
Format:
Item-specific license agreed upon to submission
Description: