Multivariate normal estimation : the case (n < p)

dc.contributor.authorStrydom, Nina
dc.contributor.authorCrowther, N.A.S. (Nicolaas Andries Sadie), 1944-
dc.contributor.emailnina.strydom@up.ac.zaen_ZA
dc.date.accessioned2017-10-25T05:30:51Z
dc.date.issued2018
dc.description.abstractEstimation in the multivariate context when the number of observations available is less than the number of variables is a classical theoretical problem. In order to ensure estimability, one has to assume certain constraints on the parameters. A method for maximum likelihood estimation under constraints is proposed to solve this problem. Even in the extreme case where only a single multivariate observation is available, this may provide a feasible solution. It simultaneously provides a simple, straightforward methodology to allow for specific structures within and between covariance matrices of several populations. This methodology yields exact maximum likelihood estimates.en_ZA
dc.description.departmentStatisticsen_ZA
dc.description.embargo2018-09-21
dc.description.librarianhj2017en_ZA
dc.description.urihttp://www.tandfonline.com/loi/lsta20en_ZA
dc.identifier.citationNina Strydom & Nico Crowther (2018) Multivariate normal estimation: the case (n < p), Communications in Statistics - Theory and Methods, 47:5, 1071-1090, DOI: 10.1080/03610926.2017.1316405.en_ZA
dc.identifier.issn0361-0926 (print)
dc.identifier.issn1532-415X (online)
dc.identifier.other10.1080/03610926.2017.1316405
dc.identifier.urihttp://hdl.handle.net/2263/62917
dc.language.isoenen_ZA
dc.publisherTaylor and Francisen_ZA
dc.rights© 2017 Taylor & Francis Group, LLC. This is an electronic version of an article published in Communications in Statistics Theory and Methods , vol. 47, no. 5, pp. 1071-1090, 2018. doi : 10.1080/03610926.2017.1316405. Communications in Statistics Theory and Methods is available online at : http://www.tandfonline.comloi/lsta20.en_ZA
dc.subjectLinear growth in covariance matricesen_ZA
dc.subjectMaximum likelihood estimation under constraintsen_ZA
dc.subjectObservations less than parametersen_ZA
dc.subjectProportional covariance matricesen_ZA
dc.subjectProportional growth in covariance matricesen_ZA
dc.subjectSeemingly unrelated regressionen_ZA
dc.subjectCovariance matrixen_ZA
dc.subjectMatrix algebraen_ZA
dc.subjectMaximum likelihooden_ZA
dc.subjectMultivariate observationsen_ZA
dc.subjectMultivariate normalen_ZA
dc.subjectFeasible solutionen_ZA
dc.subjectEstimabilityen_ZA
dc.subjectCovariance matricesen_ZA
dc.titleMultivariate normal estimation : the case (n < p)en_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strydom_Multivariate_2018.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: