Multivariate normal estimation : the case (n < p)
dc.contributor.author | Strydom, Nina | |
dc.contributor.author | Crowther, N.A.S. (Nicolaas Andries Sadie), 1944- | |
dc.contributor.email | nina.strydom@up.ac.za | en_ZA |
dc.date.accessioned | 2017-10-25T05:30:51Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Estimation in the multivariate context when the number of observations available is less than the number of variables is a classical theoretical problem. In order to ensure estimability, one has to assume certain constraints on the parameters. A method for maximum likelihood estimation under constraints is proposed to solve this problem. Even in the extreme case where only a single multivariate observation is available, this may provide a feasible solution. It simultaneously provides a simple, straightforward methodology to allow for specific structures within and between covariance matrices of several populations. This methodology yields exact maximum likelihood estimates. | en_ZA |
dc.description.department | Statistics | en_ZA |
dc.description.embargo | 2018-09-21 | |
dc.description.librarian | hj2017 | en_ZA |
dc.description.uri | http://www.tandfonline.com/loi/lsta20 | en_ZA |
dc.identifier.citation | Nina Strydom & Nico Crowther (2018) Multivariate normal estimation: the case (n < p), Communications in Statistics - Theory and Methods, 47:5, 1071-1090, DOI: 10.1080/03610926.2017.1316405. | en_ZA |
dc.identifier.issn | 0361-0926 (print) | |
dc.identifier.issn | 1532-415X (online) | |
dc.identifier.other | 10.1080/03610926.2017.1316405 | |
dc.identifier.uri | http://hdl.handle.net/2263/62917 | |
dc.language.iso | en | en_ZA |
dc.publisher | Taylor and Francis | en_ZA |
dc.rights | © 2017 Taylor & Francis Group, LLC. This is an electronic version of an article published in Communications in Statistics Theory and Methods , vol. 47, no. 5, pp. 1071-1090, 2018. doi : 10.1080/03610926.2017.1316405. Communications in Statistics Theory and Methods is available online at : http://www.tandfonline.comloi/lsta20. | en_ZA |
dc.subject | Linear growth in covariance matrices | en_ZA |
dc.subject | Maximum likelihood estimation under constraints | en_ZA |
dc.subject | Observations less than parameters | en_ZA |
dc.subject | Proportional covariance matrices | en_ZA |
dc.subject | Proportional growth in covariance matrices | en_ZA |
dc.subject | Seemingly unrelated regression | en_ZA |
dc.subject | Covariance matrix | en_ZA |
dc.subject | Matrix algebra | en_ZA |
dc.subject | Maximum likelihood | en_ZA |
dc.subject | Multivariate observations | en_ZA |
dc.subject | Multivariate normal | en_ZA |
dc.subject | Feasible solution | en_ZA |
dc.subject | Estimability | en_ZA |
dc.subject | Covariance matrices | en_ZA |
dc.title | Multivariate normal estimation : the case (n < p) | en_ZA |
dc.type | Postprint Article | en_ZA |