Mean-offset classifier based on Wi-Fi indoor positioning system

dc.contributor.authorRamakrishnan, Pasungili Rajesh
dc.contributor.authorMyburgh, Hermanus Carel
dc.date.accessioned2020-02-20T08:12:29Z
dc.date.available2020-02-20T08:12:29Z
dc.date.issued2019
dc.description.abstractA mean-offset classification technique was identified. It was found that the meanoffset classifier provides stability under dynamic indoor conditions and provides consistent results when training and test data combinations are swept from 10 – 95%. In this paper the meanoffset classifier is compared to the K-Nearest Neighbors (KNN) and Naïve Bayesian (NB) classifiers, with a view of developing an adaptable and computationally efficient indoor localization model using machine learning principles. It was seen that the mean-offset classifier improved results considerably and achieved an accuracy of 0.85 m and 1.15 m under line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in residential areas.en_ZA
dc.description.departmentElectrical, Electronic and Computer Engineeringen_ZA
dc.description.librarianam2020en_ZA
dc.description.urihttp://ceur-ws.orgen_ZA
dc.identifier.citationRamakrishnan, P.R. & Myburgh, H. 2019, 'Mean-offset classifier based on Wi-Fi indoor positioning system', CEUR Workshop Proceedings, vol. 2498, pp. 331-338.en_ZA
dc.identifier.issn1613-0073
dc.identifier.urihttp://hdl.handle.net/2263/73443
dc.language.isoenen_ZA
dc.publisherCEUR Workshop Proceedingsen_ZA
dc.rightsCEUR Workshop Proceedingsen_ZA
dc.subjectMachine learningen_ZA
dc.subjectMean-offset classification techniqueen_ZA
dc.subjectK-nearest neighbors (KNN)en_ZA
dc.subjectNon-line-of-sight (NLOS)en_ZA
dc.subjectLine-of-sight (LOS)en_ZA
dc.subjectNaive Bayesian NLOSen_ZA
dc.titleMean-offset classifier based on Wi-Fi indoor positioning systemen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ramakrishnan_MeanOffset_2019.pdf
Size:
723.31 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: