A Bayesian ARMA-GARCH EWMA monitoring scheme for long run : a case study on monitoring the USD/ZAR exchange rate

dc.contributor.authorShingwenyana, Mxengeni
dc.contributor.authorMalela-Majika, Jean-Claude
dc.contributor.authorCastagliola, Philippe
dc.contributor.authorHuman, Schalk William
dc.contributor.emailmalela.mjc@up.ac.za
dc.date.accessioned2024-07-04T10:19:46Z
dc.date.issued2024
dc.description.abstractStatistical process monitoring (SPM) offers an important toolkit used to monitor the stability of a process to improve the quality of outputs and/or services. More often, the design of control charts requires the estimation of the probability density function that involves selecting a common distribution that facilitates the estimation of the process parameters. The Bayesian approach is one of the most efficient techniques used in such instances. It incorporates informative and non-informative priors, i.e., uses information on past data and charting structures, to estimate parameters more efficiently than classical approaches. Bayesian approaches reduce the total expected cost over a finite horizon or the long-run expected average cost. This paper introduces a new Bayesian exponentially weighted moving average (EWMA) monitoring scheme for long runs based on an ARMA-GARCH model. The properties of the new monitoring scheme are investigated in terms of the run-length distribution. A case study on monitoring the USD to ZAR exchange rate is provided using the proposed Bayesian ARMA-GARCH EWMA monitoring scheme.en_US
dc.description.departmentStatisticsen_US
dc.description.embargo2024-07-20
dc.description.librarianhj2024en_US
dc.description.sdgSDG-08:Decent work and economic growthen_US
dc.description.sponsorshipThe South African National Research Foundation (NRF), UCDP and the Research Development Programme at the University of Pretoria, Department of Research and Innovation (DRI).en_US
dc.description.urihttps://www.tandfonline.com/loi/lqen20en_US
dc.identifier.citationMxengeni Shingwenyana, Jean-Claude Malela-Majika, Philippe Castagliola & Schalk W. Human (2024) A Bayesian ARMA-GARCH EWMA monitoring scheme for long run: A case study on monitoring the USD/ZAR exchange rate, Quality Engineering, 36:3, 471-486, DOI: 10.1080/08982112.2023.2234458.en_US
dc.identifier.issn0898-2112 (print)
dc.identifier.issn1532-4222 (online)
dc.identifier.other10.1080/08982112.2023.2234458
dc.identifier.urihttp://hdl.handle.net/2263/96796
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.rights© 2023 Taylor & Francis Group, LLC. This is an electronic version of an article published in Quality Engineering, vol. 36, no. 3, pp. 471-486, 2024. doi : 10.1080/08982112.2023.2234458. Quality Engineering is available online at: https://www.tandfonline.com/loi/lqen20.en_US
dc.subjectAutoregressive moving average (ARMA)en_US
dc.subjectGeneralized autoregressive conditional heteroskedasticity (GARCH)en_US
dc.subjectARMA-GARCHen_US
dc.subjectBayesian approachen_US
dc.subjectControl charten_US
dc.subjectExponentially weighted moving average (EWMA)en_US
dc.subjectFinancial dataen_US
dc.subjectPrior distributionen_US
dc.subjectPosterior distributionen_US
dc.subjectStatistical process monitoring (SPM)en_US
dc.subjectSDG-08: Decent work and economic growthen_US
dc.titleA Bayesian ARMA-GARCH EWMA monitoring scheme for long run : a case study on monitoring the USD/ZAR exchange rateen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shingwenyana_Bayesian_2024.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: