Informative Armstrong RDF datasets for n-Ary relations

dc.contributor.authorHarmse, Henriette
dc.contributor.authorBritz, Katarina
dc.contributor.authorGerber, Aurona Jacoba
dc.date.accessioned2019-02-28T11:11:18Z
dc.date.available2019-02-28T11:11:18Z
dc.date.issued2018
dc.description.abstractThe W3C standardized Semantic Web languages enable users to capture data without a schema in a manner which is intuitive to them. The challenge is that, for the data to be useful, it should be possible to query the data and to query it efficiently, which necessitates a schema. Understanding the structure of data is thus important to both users and storage implementers: The structure of the data gives insight to users in how to query the data while storage implementers can use the structure to optimize queries. In this paper we propose that data mining routines be used to infer candidate n-ary relations with related uniqueness- and null-free constraints, which can be used to construct an informative Armstrong RDF dataset. The benefit of an informative Armstrong RDF dataset is that it provides example data based on the original data which is a fraction of the size of the original data, while capturing the constraints of the original data faithfully. A case study on a DBPedia person dataset showed that the associated informative Armstrong RDF dataset contained 0.00003% of the statements of the original DBPedia dataset.en_ZA
dc.description.departmentInformaticsen_ZA
dc.description.librarianam2019en_ZA
dc.description.urihttps://www.iospress.nl/bookserie/frontiers-in-artificial-intelligence-and-applicationsen_ZA
dc.identifier.citationHarmse, H., Britz, K. & Gerber, A. 2018, 'Informative Armstrong RDF datasets for n-Ary relations', Frontiers in Artificial Intelligence and Applications, vol. 306, pp. 187-199.en_ZA
dc.identifier.issn0922-6389
dc.identifier.other10.3233/978-1-61499-910-2-187
dc.identifier.urihttp://hdl.handle.net/2263/68519
dc.language.isoenen_ZA
dc.publisherIOS Pressen_ZA
dc.rights© 2018 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).en_ZA
dc.subjectInformative Armstrong RDF dataseten_ZA
dc.subjectInformative Armstrong ABoxen_ZA
dc.subjectSemantic weben_ZA
dc.subjectData miningen_ZA
dc.subjectExample dataen_ZA
dc.subjectUniqueness constrainten_ZA
dc.subjectN-ary relationen_ZA
dc.subjectDBPediaen_ZA
dc.subjectOntologyen_ZA
dc.subjectInformation useen_ZA
dc.subjectInformation system (IS)en_ZA
dc.subjectDigital storageen_ZA
dc.titleInformative Armstrong RDF datasets for n-Ary relationsen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Harmse_Informative_2018.pdf
Size:
256.9 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: