Controlling a grinding mill circuit using constrained model predictive static programming

dc.contributor.authorNoome, Zander M.
dc.contributor.authorLe Roux, Johan Derik
dc.contributor.emailderik.leroux@up.ac.zaen_US
dc.date.accessioned2022-11-23T08:59:12Z
dc.date.available2022-11-23T08:59:12Z
dc.date.issued2022
dc.description.abstractA constrained Model Predictive Static Programming (MPSP) method is implemented in simulation to a single-stage grinding mill circuit model. The results are compared to a constrained Nonlinear Model Predictive Control (NMPC) method. Both the constrained MPSP and NMPC controllers were able to track the desired output set-points without exceeding any constraints. The comparison shows that the constrained MPSP has a faster computational time than that of the NMPC controller with similar performance. Therefore, constrained MPSP shows promise as a model-based controller for large processes where computational time limits the use of NMPC.en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.description.sponsorshipNational Research Foundation of South Africa (Grant Numbers: 137769)en_US
dc.description.urihttps://www.journals.elsevier.com/ifac-papersonlineen_US
dc.identifier.citationNoome, Z.M. & Le Roux, J.D. 2022, 'Controlling a grinding mill circuit using constrained model predictive static programming', IFAC-PapersOnLine, vol. 55, no. 21, pp. 49-54, doi: 10.1016/j.ifacol.2022.09.242.en_US
dc.identifier.issn2405-8963 (online)
dc.identifier.other10.1016/j.ifacol.2022.09.242
dc.identifier.urihttps://repository.up.ac.za/handle/2263/88453
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2022 The Authors. This is an open access article under the CC BY-NC-ND license.en_US
dc.subjectComputational timeen_US
dc.subjectGrinding millen_US
dc.subjectIndustrial processesen_US
dc.subjectModel predictive static programming (MPSP)en_US
dc.subjectNonlinear model predictive control (NMPC)en_US
dc.titleControlling a grinding mill circuit using constrained model predictive static programmingen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Noome_Controlling_2022.pdf
Size:
554.99 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: