Controlling light harvesting with light

dc.contributor.authorGwizdala, Michal
dc.contributor.authorBerera, Rudi
dc.contributor.authorKirilovsky, Diana
dc.contributor.authorVan Grondelle, Rienk
dc.contributor.authorKruger, T.P.J. (Tjaart)
dc.contributor.emailtjaart.kruger@up.ac.zaen_ZA
dc.date.accessioned2017-03-23T08:50:03Z
dc.date.issued2016-09
dc.description.abstractWhen exposed to intense sunlight all organisms performing oxygenic photosynthesis implement various photoprotective strategies to prevent potentially lethal photodamage. The rapidly responding photoprotective mechanisms, occurring in the light-harvesting pigment-protein antennae, take effect within tens of seconds, while the dramatic and potentially harmful light intensity fluctuations manifest also on shorter timescales. Here we show that upon illumination, individual phycobilisomes from Synechocystis PCC 6803, which in vivo under low-light conditions harvest solar energy, have the inbuilt capacity to switch rapidly and reversibly into light-activated energy-dissipating states. Simultaneously measured fluorescence intensity, lifetime and spectra, compared with a multi-compartmental kinetic model, revealed that essentially any subunit of a phycobilisome can be quenched, and that the core complexes were targeted most frequently. Our results provide the first evidence for fluorescence blinking from a biologically active system at physiological light intensities and suggest that the light-controlled switches to intrinsically available energy dissipating states are responsible for a novel type of photoprotection in cyanobacteria. We anticipate other photosynthetic organisms to employ similar strategies to respond instantly to rapid solar light intensity fluctuations. A detailed understanding of the photophysics of photosynthetic antenna complexes is of great interest for bioinspired solar energy technologies.en_ZA
dc.description.departmentPhysicsen_ZA
dc.description.embargo2017-09-30
dc.description.librarianhb2017en_ZA
dc.description.sponsorshipMG acknowledges the European Molecu-lar Biology Organization for funding his Long Term Fellow-ship. The work of MG, TPJK, RB and RvG was supported from advanced investigator grant (267333, PHOTPROT) to RvG from the European Research Council and the TOP grant (700.58.305) from the Foundation of Chemical Sciences part of NWO. RvG gratefully acknowledges his ‘Academy Profes-sor’ grant from the Royal Netherlands Academy of Arts and Sciences (KNAW). TPJK was further supported by the Uni-versity of Pretoria’s Research Development Programme (Grant No. A0W679). RB also kindly acknowledges financial support from the Japanese Society for the Promotion of Sci-ence (JSPS) via a long-term visitor grant. The work in the laboratory of DK was supported from Agence Nationale de la Recherche (project CYANOPROTECT), the CNRS, the Com-missariat à l’Energie Atomique, the HARVEST EU FP7 Marie Curie Research Training Network, Phycosource, and the French Infrastructure for Integrated Structural Biology (Grant ANR-10-INSB-05-01).en_ZA
dc.description.urihttp://pubs.acs.org/JACSen_ZA
dc.identifier.citationGwizdala, M, Berera, R, Kirilovsky, D, Van Grondelle, R & Kruger, TPJ 2016, 'Controlling light harvesting with light', Journal of the American Chemical Society, vol. 138, no. 36, pp. 11616-11622.en_ZA
dc.identifier.issn0002-7863 (print)
dc.identifier.issn1520-5126 (online)
dc.identifier.other10.1021/jacs.6b04811
dc.identifier.urihttp://hdl.handle.net/2263/59507
dc.language.isoenen_ZA
dc.publisherAmerican Chemical Societyen_ZA
dc.rights© 2016 American Chemical Societyen_ZA
dc.subjectIntense sunlighten_ZA
dc.subjectPotentially harmful lighten_ZA
dc.subjectPhotophysicsen_ZA
dc.subjectPhotosynthetic antenna complexesen_ZA
dc.titleControlling light harvesting with lighten_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gwizdala_Controlling_2016.pdf
Size:
787.98 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: