Electricity load forecasting with artificial neural networks

dc.contributor.authorBoraine, H.
dc.contributor.authorYadavalli, Venkata S. Sarma
dc.date.accessioned2012-11-26T10:59:37Z
dc.date.available2012-11-26T10:59:37Z
dc.date.issued2003
dc.description.abstractArtificial neural networks are powerful tools for time series forecasting. The problem addressed in this article is to do multi-step prediction of a stationary time series, and to find the associated prediction limits. Artificial neural network models for time series are non-linear. However, results that are applicable to linear models are sometimes mistakenly applied to non-linear models. One example where this is observed is in multi-step forecasting. A bootstrap method is proposed to calculate one- and multi-step predictions and prediction limits. The results are applied to an electricity load time series as well as to a pure autoregressive time series.en_US
dc.description.abstractKunsmatige neurale netwerke is kragtige instrumente vir tydreeksvoorspelling. In hierdie artikel word multistap-vooruitberaming van ‘n stasionêre tydreeks en die gepaardgaande vertroueinterval behandel. Resultate wat slegs geldig is vir lineêre modelle word soms verkeerdelik op neurale netwerkmodelle toegepas. ‘n Voorbeeld hiervan kom in multistap-voorspelling voor. ‘n Skoenlusmetode, word voorgestel waarvolgens eenstap- en multistap- voorspellings en vertroueintervalle bereken kan word. Die resultate word op ‘n elektrisiteitslastydreeks en op ‘n suiwer outoregressiewe tydreeks toegepas.en_US
dc.description.urihttp://sajie.journals.ac.zaen_US
dc.format.extent14 pagesen_US
dc.format.mediumPDFen_US
dc.identifier.citationBoraine, H & Yadavalli, VSS 2003, 'Electricity load forecasting with artificial neural networks', The South African Journal of Industrial Engineering, vol. 14, no. 2, pp. 23-35. [http://sajie.journals.ac.za]en_US
dc.identifier.issn1012-277X (print)
dc.identifier.issn2224-7890 (online)
dc.identifier.urihttp://hdl.handle.net/2263/20490
dc.language.isoenen_US
dc.publisherSouthern African Institute for Industrial Engineeringen_US
dc.rightsSouthern African Institute for Industrial Engineeringen_US
dc.subjectArtificial neural networksen_US
dc.subjectLinear modelsen_US
dc.subjectNon-linear modelsen_US
dc.subjectForecastingen_US
dc.titleElectricity load forecasting with artificial neural networksen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Boraine_Electricity(2003).pdf
Size:
693.9 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: