Forecasting core inflation : the case of South Africa

dc.contributor.authorRuch, Franz
dc.contributor.authorBalcilar, Mehmet
dc.contributor.authorGupta, Rangan
dc.contributor.authorModise, Mampho P.
dc.contributor.emailrangan.gupta@up.ac.zaen_ZA
dc.date.accessioned2020-03-18T13:12:39Z
dc.date.issued2020
dc.description.abstractUnderlying, or core, inflation is likely the most important variable for monetary policy. It is considered to be the optimal nominal anchor as it is stable, excludes relative price shocks, and reflects underlying trends in the behaviour of price-setters and demand conditions in the economy. Despite its importance, there is sparse literature on estimating and forecasting core inflation in South Africa, with the focus still on measuring it. This paper emphasizes predicting core inflation from time-varying parameter vector autoregressive models (TVP-VARs), factor-augmented VARs (FAVAR), and structural break models using quarterly data from 1981Q1 to 2013Q4. We use mean squared forecast errors (MSFE) and predictive likelihoods to evaluate the forecasts. In general, we find that (i) time-varying parameter models consistently outperform constant coefficient models (ii) small TVP-VARs outperform all other models; (iii) models with heteroscedastic errors do better than models with homoscedastic errors; and (iv) allowing for structural breaks does not improve the predictability of core inflation. Overall, our results imply that additional information on the growth rate of the economy and the interest rate is sufficient to forecast core inflation accurately, but the relationship between these three variables needs to be modelled in a time-varying fashion.en_ZA
dc.description.departmentEconomicsen_ZA
dc.description.embargo2021-06-23
dc.description.librarianhj2020en_ZA
dc.description.urihttps://www.tandfonline.com/loi/raec20en_ZA
dc.identifier.citationFranz Ruch, Mehmet Balcilar, Rangan Gupta & Mampho P. Modise (2020): Forecasting core inflation: the case of South Africa, Applied Economics, 52(28): 3004-3022, DOI: 10.1080/00036846.2019.1701181.en_ZA
dc.identifier.issn0003-6846 (print)
dc.identifier.issn1466-4283 (online)
dc.identifier.other10.1080/00036846.2019.1701181
dc.identifier.urihttp://hdl.handle.net/2263/73805
dc.language.isoenen_ZA
dc.publisherRoutledgeen_ZA
dc.rights© 2019 Informa UK Limited, trading as Taylor & Francis Group. This is an electronic version of an article published in Applied Economics, vol. 52, no. 28, pp. 3004-3022, 2020. doi : 10.1080/00036846.2019.1701181. Applied Economics is available online at : http://www.tandfonline.comloi/raec20.en_ZA
dc.subjectCore inflationen_ZA
dc.subjectForecastingen_ZA
dc.subjectSmall-scale vector autoregressive modelen_ZA
dc.subjectLarge-scale vector autoregressive modelen_ZA
dc.subjectConstant parameteren_ZA
dc.subjectTime-varying parameter (TVP)en_ZA
dc.subjectTime-varying parameter vector autoregressive (TVP-VAR)en_ZA
dc.subjectMean squared forecast errors (MSFE)en_ZA
dc.titleForecasting core inflation : the case of South Africaen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ruch_Forecasting_2020.pdf
Size:
765.07 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: