Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data

dc.contributor.authorSegnon, Mawuli K.
dc.contributor.authorLau, Chi Keung
dc.contributor.authorWilfling, Bernd
dc.contributor.authorGupta, Rangan
dc.contributor.emailrangan.gupta@up.ac.zaen_ZA
dc.date.accessioned2021-10-25T09:22:15Z
dc.date.issued2022
dc.description.abstractWe analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.en_ZA
dc.description.departmentEconomicsen_ZA
dc.description.embargo2021-11-17
dc.description.librarianam2021en_ZA
dc.description.urihttps://www.degruyter.com/view/j/sndeen_ZA
dc.identifier.citationSegnon, Mawuli, Lau, Chi Keung, Wilfling, Bernd and Gupta, Rangan. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data" Studies in Nonlinear Dynamics & Econometrics, vol. 26, no. 1, 2022, pp. 73-98. https://doi.org/10.1515/snde-2019-0009.en_ZA
dc.identifier.issn1558-3708 (print)
dc.identifier.issn1081-1826 (online)
dc.identifier.other10.1515/snde-2019-0009
dc.identifier.urihttp://hdl.handle.net/2263/82224
dc.language.isoenen_ZA
dc.publisherDe Gruyteren_ZA
dc.rights© 2020 Walter de Gruyter GmbH, Berlin/Bostonen_ZA
dc.subjectElectricity price volatilityen_ZA
dc.subjectGARCH-type processesen_ZA
dc.subjectMarkov-switching processesen_ZA
dc.subjectMultifractal modelingen_ZA
dc.subjectVolatility forecastingen_ZA
dc.titleAre multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday dataen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Segnon_Are_2022.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: