Molecular profiling and antimicrobial resistance of Shiga toxin-producing Escherichia coli O26, O45, O103, O121, O145 and O157 isolates from cattle on cow-calf operations in South Africa

Loading...
Thumbnail Image

Authors

Karama, Musafiri
Mainga, Alfred Omwando
Malahlela, Mogaugedi N.
El-Ashram, Saeed
Kalake, Alan

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group

Abstract

In this study, 140 cattle STEC isolates belonging to serogroups O157, O26, O145, O121, O103 and O45 were characterized for 38 virulence-associated genes, antimicrobial resistance profiles and genotyped by PFGE. The majority of isolates carried both stx1 and stx2 concurrently, stx2c, and stx2d; plasmidencoded genes ehxA, espP, subA and saa but lacked katP and etpD and eaeA. Possession of eaeA was significantly associated with the presence of nle genes, katP, etpD, ureC and terC. However, saa and subA, stx1c and stx1d were only detected in eaeA negative isolates. A complete OI-122 and most non- LEE effector genes were detected in only two eaeA positive serotypes, including STEC O157:H7 and O103:H2. The eaeA gene was detected in STEC serotypes that are commonly implicated in severe humans disease and outbreaks including STEC O157:H7, STEC O145:H28 and O103:H2. PFGE revealed that the isolates were highly diverse with very low rates of antimicrobial resistance. In conclusion, only a small number of cattle STEC serotypes that possessed eaeA, had the highest number of virulenceassociated genes, indicative of their high virulence. Further characterization of STEC O157:H7, STEC O145:H28 and O103:H2 using whole genome sequencing will be needed to fully understand their virulence potential for humans.

Description

This manuscript is part a dissertation submitted in the Veterinary Public Health section, Department of Paraclinical Sciences, University of Pretoria, in partial fulfilment of the requirements for the degree of Master of Science (Veterinary Science). (http://hdl.handle.net/2263/65499)

Keywords

Humans, Genome sequencing, Cattle, Genes, South Africa (SA), Cow-calf operations, Molecular profiling, Antimicrobial resistance, Shiga toxin-producing Escherichia coli (STEC)

Sustainable Development Goals

Citation

Karama, M., Mainga, A.O., Cenci-Goga, B.T. et al. 2019, 'Molecular profiling and antimicrobial resistance of Shiga toxin-producing Escherichia coli O26, O45, O103, O121, O145 and O157 isolates from cattle on cow-calf operations in South Africa', Scientific Reports, vol. 9, art. 11930, pp. 1-15.