The future of zoonotic risk prediction

dc.contributor.authorCarlson, Colin J.
dc.contributor.authorFarrell, Maxwell J.
dc.contributor.authorGrange, Zoe
dc.contributor.authorHan, Barbara A.
dc.contributor.authorMollentze, Nardus
dc.contributor.authorPhelan, Alexandra L.
dc.contributor.authorRasmussen, Angela L.
dc.contributor.authorAlbery, Gregory F.
dc.contributor.authorBett, Bernard
dc.contributor.authorBrett-Major, David M.
dc.contributor.authorCohen, Lily E.
dc.contributor.authorDallas, Tad
dc.contributor.authorEskew, Evan A.
dc.contributor.authorFagre, Anna C.
dc.contributor.authorForbes, Kristian M.
dc.contributor.authorGibb, Rory
dc.contributor.authorHalabi, Sam
dc.contributor.authorHammer, Charlotte C.
dc.contributor.authorKatz, Rebecca
dc.contributor.authorKindrachuk, Jason
dc.contributor.authorMuylaert, Renata L.
dc.contributor.authorNutter, Felicia B.
dc.contributor.authorOgola, Joseph
dc.contributor.authorOlival, Kevin J.
dc.contributor.authorRourke, Michelle
dc.contributor.authorRyan, Sadie J.
dc.contributor.authorRoss, Noam
dc.contributor.authorSeifert, Stephanie N.
dc.contributor.authorSironen, Tarja
dc.contributor.authorStandley, Claire J.
dc.contributor.authorTaylor, Kishana
dc.contributor.authorVenter, Marietjie
dc.contributor.authorWebala, Paul W.
dc.date.accessioned2022-10-05T13:03:12Z
dc.date.available2022-10-05T13:03:12Z
dc.date.issued2021
dc.description.abstractIn the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.en_US
dc.description.departmentMedical Virologyen_US
dc.description.librarianam2022en_US
dc.description.sponsorshipNSF BII 2021909; the University of Toronto EEB Fellowship; the Wellcome Trust; the National Institute of Allergy and Infectious Diseases of the National Institutes of Health and the Defense Threat Reduction Agency.en_US
dc.description.urihttp://rstb.royalsocietypublishing.orgen_US
dc.identifier.citationCarlson, C.J., Farrell, M.J., Grange, Z. et al. 2021 The future of zoonotic risk prediction. Philosophical Transactions of the Royal Society B-Biological Sciences 376: 20200358. https://DOI.org/10.1098/rstb.2020.0358.en_US
dc.identifier.issn0962-8436 (print)
dc.identifier.issn1471-2970 (online)
dc.identifier.other10.1098/rstb.2020.0358
dc.identifier.urihttps://repository.up.ac.za/handle/2263/87526
dc.language.isoenen_US
dc.publisherRoyal Societyen_US
dc.rights© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License.en_US
dc.subjectZoonotic risken_US
dc.subjectEpidemic risken_US
dc.subjectAccess and benefit sharingen_US
dc.subjectMachine learningen_US
dc.subjectGlobal healthen_US
dc.subjectViral ecologyen_US
dc.titleThe future of zoonotic risk predictionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carlson_Future_2021.pdf
Size:
590.01 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: