Kurtosis of the logistic-exponential survival distribution

dc.contributor.authorVan Staden, Paul Jacobus
dc.contributor.authorKing, Robert A.R.
dc.contributor.emailpaul.vanstaden@up.ac.zaen_ZA
dc.date.accessioned2016-10-12T09:27:12Z
dc.date.issued2016-01
dc.description.abstractIn this article, the kurtosis of the logistic-exponential distribution is analyzed. All the moments of this survival distribution are finite, but do not possess closed-form expressions. The standardized fourth central moment, known as Pearson’s coefficient of kurtosis and often used to describe the kurtosis of a distribution, can thus also not be expressed in closed form for the logistic-exponential distribution. Alternative kurtosis measures are therefore considered, specifically quantile-based measures and the L-kurtosis ratio. It is shown that these kurtosis measures of the logistic-exponential distribution are invariant to the values of the distribution’s single shape parameter and hence skewness invariant.en_ZA
dc.description.departmentStatisticsen_ZA
dc.description.embargo2017-01-31
dc.description.librarianhb2016en_ZA
dc.description.sponsorshipThe first author is grateful for financial support received from the Department of Statistics, STATOMET and the Vice-Chancellor s Academic Development Grant at the University of Pretoria.en_ZA
dc.description.urihttp://www.tandfonline.com/loi/lsta20en_ZA
dc.identifier.citationPaul J. van Staden & Robert A. R. King (2016) Kurtosis of the logisticexponential survival distribution, Communications in Statistics - Theory and Methods, 45:23,6891-6899, DOI: 10.1080/03610926.2014.972566.en_ZA
dc.identifier.issn0361-0926 (print)
dc.identifier.issn1532-415X (online)
dc.identifier.other10.1080/03610926.2014.972566
dc.identifier.urihttp://hdl.handle.net/2263/57115
dc.language.isoenen_ZA
dc.publisherTaylor and Francisen_ZA
dc.rights© Taylor and Francis. This is an electronic version of an article published in Communications in Statistics Theory and Methods, vol. 45, no. 23, pp. 6891-6899, 2016. doi : 10.1080/03610926.2014.972566. Communications in Statistics - Theory and Methods is available online at : http://www.tandfonline.comloi/lsta20.en_ZA
dc.subjectL-momentsen_ZA
dc.subjectQuantile functionen_ZA
dc.subjectRatio-of-spread functionsen_ZA
dc.subjectSkewness-invariant measure of kurtosisen_ZA
dc.subjectSpread-spread ploten_ZA
dc.titleKurtosis of the logistic-exponential survival distributionen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VanStaden_Kurtosis_2016.pdf
Size:
292.11 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: