Making messy data work for conservation

dc.contributor.authorDobson, A.D.M.
dc.contributor.authorMilner-Gulland, E.J.
dc.contributor.authorAebischer, N.J.
dc.contributor.authorBeale, C.M.
dc.contributor.authorBrozovic, R.
dc.contributor.authorCoals, P.
dc.contributor.authorCritchlow, R.
dc.contributor.authorDancer, Anthony
dc.contributor.authorGreve, Michelle
dc.contributor.authorHinsley, Amy
dc.contributor.authorIbbett, Harriet
dc.contributor.authorJohnston, Alison
dc.contributor.authorKuiper, Timothy
dc.contributor.authorLe Comber, Steven
dc.contributor.authorMahood, Simon P.
dc.contributor.authorMoore, Jennifer F.
dc.contributor.authorNilsen, Erlend B.
dc.contributor.authorPocock, Michael J.O.
dc.contributor.authorQuinn, Anthony
dc.contributor.authorTravers, Henry
dc.contributor.authorWilfred, Paulo
dc.contributor.authorWright, Joss
dc.contributor.authorKeane, Aidan
dc.date.accessioned2021-11-22T08:38:35Z
dc.date.available2021-11-22T08:38:35Z
dc.date.issued2020-05
dc.description.abstractConservationists increasingly use unstructured observational data, such as citizen science records or ranger patrol observations, to guide decision making. These datasets are often large and relatively cheap to collect, and they have enormous potential. However, the resulting data are generally “messy,” and their use can incur considerable costs, some of which are hidden. We present an overview of the opportunities and limitations associated with messy data by explaining how the preferences, skills, and incentives of data collectors affect the quality of the information they contain and the investment required to unlock their potential. Drawing widely from across the sciences, we break down elements of the observation process in order to highlight likely sources of bias and error while emphasizing the importance of cross-disciplinary collaboration. We propose a framework for appraising messy data to guide those engaging with these types of dataset and make them work for conservation and broader sustainability applications.en_ZA
dc.description.departmentPlant Production and Soil Scienceen_ZA
dc.description.librarianhj2021en_ZA
dc.description.urihttps://www.cell.com/one-earth/homeen_ZA
dc.identifier.citationDobson, A.D.M., Milner-Gulland, E.J., Aebischer, N.J. et al. 2020, 'Making messy data work for conservation', One Earth, vol. 2, no. 5, pp. 455-465.en_ZA
dc.identifier.issn2590-3322 (online)
dc.identifier.other10.1016/j.oneear.2020.04.012
dc.identifier.urihttp://hdl.handle.net/2263/82789
dc.language.isoenen_ZA
dc.publisherElsevieren_ZA
dc.rights© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_ZA
dc.subjectUnstructured observational dataen_ZA
dc.subjectBiasen_ZA
dc.subjectCitizen scienceen_ZA
dc.subjectObservation processen_ZA
dc.subjectVolunteer dataen_ZA
dc.subjectCrowd sensingen_ZA
dc.titleMaking messy data work for conservationen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dobson_Making_2020.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: