Applying U-Pb chronometry and trace element geochemistry of apatite to carbonatite-phoscorite complexes – as exemplified by the 2.06 Ga Phalaborwa Complex, South Africa

dc.contributor.authorLe Bras, L.Y.
dc.contributor.authorMilani, Lorenzo
dc.contributor.authorBolhar, R.
dc.contributor.authorO'Sullivan, G.
dc.contributor.emaillorenzo.milani@up.ac.zaen_US
dc.date.accessioned2023-01-24T11:55:27Z
dc.date.available2023-01-24T11:55:27Z
dc.date.issued2022-06
dc.description.abstractUranium-lead dating of apatite was undertaken by Laser Ablation-Sector Field-Inductively Coupled Plasma Mass Spectrometry (LA-SF-ICPMS) in situ on apatite from principal rock types of the Loolekop phoscorite-carbonatite intrusion within the Phalaborwa Igneous Complex, South Africa. In situ U-Pb analysis on selected apatite produces U-Pb ages of 2 083.9 ± 41.9 Ma (n = 33; MSWD = 0.87), 2 020.4 ± 116.7 Ma (n = 18; MSWD = 0.91) and 2 034.3 ± 39.0 Ma (n = 17; MSWD = 0.6) for phoscorite, banded carbonatite and transgressive carbonatite, respectively, with a combined age of 2 054.3 ± 21.4 Ma (n = 68; MSWD = 0.86), which we interpret to indicate the timing of emplacement. Apatite U-Pb dates are similar to dates reported in previous studies using zircon and baddeleyite U-Pb systems from the same rock types, showing that apatite can be used as geochronometer in the absence of other commonly used U-Pb-bearing accessory minerals, not only in carbonatite-phoscorite complexes, but in all mafic igneous intrusions. Similar ages for zircon, baddeleyite and apatite indicate little to no re-equilibration of the latter, and suggest that the Loolekop Pipe intrusion cooled below 350°C within ~21 Ma of emplacement. This conclusion is supported by apatite BSE images and trace element systematics, with unimodal igneous trace element characteristics for apatite in each sample. The combination of in situ U-Pb geochronology, trace element geochemistry and BSE imaging makes apatite a useful tool to investigate the emplacement mechanisms of carbonatite-phoscorite complexes, which is particularly advantageous as apatite is one of the main mineral phases in these rock suites.en_US
dc.description.departmentGeologyen_US
dc.description.librarianhj2023en_US
dc.description.urihttps://gssa.pub/sajg/about.htmlen_US
dc.identifier.citationLe Bras, L.Y., Milani, L., Bolhar, R. & O'Sullivan, G. 2022, 'Applying U-Pb chronometry and trace element geochemistry of apatite to carbonatite-phoscorite complexes – as exemplified by the 2.06 Ga Phalaborwa Complex, South Africa', South African Journal of Geology, vol. 125, no. 2, pp. 179–190. doi: https://doi.org/10.25131/sajg.125.0015.en_US
dc.identifier.issn1996-8590 (online)
dc.identifier.issn1012-0750 (print)
dc.identifier.other10.25131/sajg.125.0015
dc.identifier.urihttps://repository.up.ac.za/handle/2263/88940
dc.language.isoenen_US
dc.publisherGeological Society of South Africaen_US
dc.rights© 2022 Geological Society of South Africa. All rights reserved.en_US
dc.subjectLaser ablation-sector field-inductively coupled plasma mass spectrometry (LA-SF-ICPMS)en_US
dc.subjectApatiteen_US
dc.subjectUranium-lead datingen_US
dc.subjectPhalaborwa Igneous Complex, South Africaen_US
dc.subjectIn situen_US
dc.subjectU-Pb chronometryen_US
dc.subjectCarbonatite-phoscorite complexesen_US
dc.subjectTrace element geochemistryen_US
dc.titleApplying U-Pb chronometry and trace element geochemistry of apatite to carbonatite-phoscorite complexes – as exemplified by the 2.06 Ga Phalaborwa Complex, South Africaen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeBras_Applying_2022.pdf
Size:
4.72 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: