Modelling of coal trade process for the logistics enterprise and its optimisation with stochastic predictive control
Loading...
Date
Authors
Cheng, Qifeng
Ning, Shiwei
Xia, Xiaohua
Yang, Fan
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor and Francis
Abstract
In the paper, a typical coal trade process is described and modelled, where one logistics enterprise with blending equipments
lies in the core and two types of common contracts are elucidated to define constraints. A mixed-integer model is built and
featured by addressing contract violation, blending operation, real-time price information and arbitrarily distributed stochastic
demands. To deal with the stochastic demands, probabilistic constraints are formed. Accordingly, stochastic model predictive
control strategy with both receding horizon and decreasing horizon formulations is developed to handle the probabilistic
constraints and exploit the value of newest price information. By solving a series of mixed-integer linear programmes,
optimal coal trade decisions for the logistics enterprise can be obtained, including procurement decision, selling decision and
operational decision of the blending equipments. Thorough simulation experiments are carried out and compared with three
different strategies, which interpret the effectiveness of the proposed strategy.
Description
Keywords
Coal trade decisions, Stochastic demands, Blending operation, Stochastic model predictive control
Sustainable Development Goals
Citation
Qifeng Cheng, Shiwei Ning, Xiaohua Xia & Fan Yang (2016) Modelling
of coal trade process for the logistics enterprise and its optimisation with stochastic
predictive control, International Journal of Production Research, 54:8, 2241-2259, DOI:
10.1080/00207543.2015.106256810.1080/00207543.2015.1062568.