Mechanism of formation water molecules and chemical bonds in Leptothrix materials

Loading...
Thumbnail Image

Authors

Mirzayeva, D.M.
Aghayeva, S.A.
Kaplina, S.P.
Slavov, L.
Gustova, M.V.
Tiep, N.V.
Tuan, P.L.
Maletskii, A.V.
Doroshkevich, A.S.
Thabethe, Thabsile Theodora

Journal Title

Journal ISSN

Volume Title

Publisher

Jomard Publishing

Abstract

The provided study involves investigating chemical interactions in Leptothrix biomaterial through infrared spectroscopy. The analysis explores variations in chemical relationships based on the nature of chemical bonds and biomaterial coordinates. The primary chemical bonds identified in the biomaterial are associated with Fe-O vibrations and resonances of [OH] functional groups. Additionally, the study presents model representations detailing the formation mechanism of water molecules within the Leptothrix matrix. Model calculations for a two-vacancy cluster defect structure in Fe2O3 and Fe3O4 reveal lifetimes of 180 ps and 174 ps, respectively.

Description

Keywords

Chemical bonds, Leptothrix biofilms, Iron oxide, Fourier transform infrared spectroscopy (FTIR), Lattice vibration

Sustainable Development Goals

None

Citation

Mirzayeva, D.M., Aghayeva, S.A., Kaplina, S.P. et al. 2024, 'Mechanism of formation water molecules and chemical bonds in Leptothrix materials', Advanced Physical Research, vol. 6, no. 1, pp. 5-14, doi : 10.62476/apr61514. .