Self-adaptive quantum particle swarm optimization for dynamic environments

dc.contributor.authorPamparà, Gary
dc.contributor.authorEngelbrecht, Andries P.
dc.date.accessioned2018-12-03T12:02:02Z
dc.date.issued2018-10
dc.description.abstractThe quantum-inspired particle swarm optimization (QPSO) algorithm has been developed to find and track an optimum for dynamic optimization problems. Though QPSO has been shown to be effective, despite its simplicity, it does introduce an additional control parameter: the radius of the quantum cloud. The performance of QPSO is sensitive to the value assigned to this problem dependent parameter, which basically limits the area of the search space wherein new, better optima can be detected. This paper proposes a strategy to dynamically adapt the quantum radius, with changes in the environment. A comparison of the adaptive radius QPSO with the static radius QPSO showed that the adaptive approach achieves desirable results, without prior tuning of the quantum radius.en_ZA
dc.description.departmentComputer Scienceen_ZA
dc.description.embargo2019-10-03
dc.description.librarianhj2018en_ZA
dc.description.urihttp://link.springer.combookseries/558en_ZA
dc.identifier.citationPamparà G., Engelbrecht A.P. (2018) Self-adaptive Quantum Particle Swarm Optimization for Dynamic Environments. In: Dorigo M., Birattari M., Blum C., Christensen A., Reina A., Trianni V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science, vol 11172. Springer, Cham.en_ZA
dc.identifier.issn0302-9743 (print)
dc.identifier.issn1611-3349 (online)
dc.identifier.issn10.1007/978-3-030-00533-7_13
dc.identifier.urihttp://hdl.handle.net/2263/67434
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© Springer Nature Switzerland AG 2018. The original publication is available at : http://link.springer.combookseries/558.en_ZA
dc.subjectSwarm intelligenceen_ZA
dc.subjectAdaptive approachen_ZA
dc.subjectAdditional controlen_ZA
dc.subjectDynamic environmentsen_ZA
dc.subjectDynamic optimization problem (DOP)en_ZA
dc.subjectSearch spacesen_ZA
dc.subjectSelf-adaptiveen_ZA
dc.subjectParticle swarm optimization (PSO)en_ZA
dc.subjectQuantum-inspired particle swarm optimization (QPSO)en_ZA
dc.titleSelf-adaptive quantum particle swarm optimization for dynamic environmentsen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pampara_SelfAdaptive_2018.pdf
Size:
300.3 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: