Forecasting US consumer price index : does nonlinearity matter?

dc.contributor.authorAlvarez-Diaz, Marcos
dc.contributor.authorGupta, Rangan
dc.contributor.emailrangan.gupta@up.ac.zaen_ZA
dc.date.accessioned2016-10-20T12:54:41Z
dc.date.issued2016-10
dc.description.abstractThe objective of this paper is to predict, both in-sample and out-of-sample, the consumer price index (CPI) of the United States (US) economy based on monthly data covering the period of 1980:1-2013:12, using a variety of linear (random walk (RW), autoregressive (AR) and seasonally-adjusted autoregressive moving average (SARIMA)) and nonlinear (artificial neural network (ANN) and genetic programming (GP)) univariate models. Our results show that, while the SARIMA model is superior relative to other linear and nonlinear models, as it tends to produce smaller forecast errors; statistically, these forecasting gains are not significant relative to higher-order AR and nonlinear models, though simple benchmarks like the RW and AR(1) models are statistically outperformed. Overall, we show that in terms of forecasting the US CPI, accounting for nonlinearity does not necessarily provide us with any statistical gains.en_ZA
dc.description.departmentEconomicsen_ZA
dc.description.embargo2018-04-30
dc.description.librarianhb2016en_ZA
dc.description.urihttp://www.tandfonline.com/loi/raec20en_ZA
dc.identifier.citationMarcos Álvarez-Díaz & Rangan Gupta (2016) Forecasting US consumer price index: does nonlinearity matter?, Applied Economics, 48:46, 4462-4475, DOI: 10.1080/00036846.2016.1158922.en_ZA
dc.identifier.issn0003-6846 (print)
dc.identifier.issn1466-4283 (online)
dc.identifier.other10.1080/00036846.2016.1158922
dc.identifier.urihttp://hdl.handle.net/2263/57391
dc.language.isoenen_ZA
dc.publisherRoutledgeen_ZA
dc.rights© 2016 Taylor and Francis. This is an electronic version of an article published in Applied Economics, vol. 48, no. 46, pp. 4462-4475, 2016. doi : 10.1080/00036846.2016.1158922. Applied Economics is available online at : http://www.tandfonline.comloi/raec20.en_ZA
dc.subjectForecastingen_ZA
dc.subjectConsumer price index (CPI)en_ZA
dc.subjectUnited States (US)en_ZA
dc.subjectRandom walk (RW)en_ZA
dc.subjectAutoregressive (AR)en_ZA
dc.subjectSeasonally-adjusted autoregressive moving average (SARIMA)en_ZA
dc.subjectArtificial neural network (ANN)en_ZA
dc.subjectGenetic programming (GP)en_ZA
dc.titleForecasting US consumer price index : does nonlinearity matter?en_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlvarezDiaz_Forecasting_2016.pdf
Size:
386.8 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: