A simplicial homology algorithm for Lipschitz optimisation

dc.contributor.authorEndres, S.C. (Stefan)
dc.contributor.authorSandrock, Carl
dc.contributor.authorFocke, Walter Wilhelm
dc.date.accessioned2018-04-10T10:30:55Z
dc.date.issued2018-10
dc.description.abstractThe simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on the objective function. This provides both approximations of locally convex subdomains in the search space through Sperner’s lemma and a useful visual tool for characterising and efficiently solving higher dimensional black and grey box optimisation problems. This complex is built up using sampling points within the feasible search space as vertices. The algorithm is specialised in finding all the local minima of an objective function with expensive function evaluations efficiently which is especially suitable to applications such as energy landscape exploration. SHGO was initially developed as an improvement on the topographical global optimisation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO on function evaluations if the objective function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with linear and box constraints with bounds placed on the variables. Numerical experiments on linearly constrained test problems show that SHGO gives competitive results compared to TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH) and differential evolution (DE) global optimisation algorithms over a large selection of black-box problems with bounds placed on the variables from the SciPy benchmarking test suite. A Python implementation of the SHGO and TGO algorithms published under a MIT license can be found from https://bitbucket.org/upiamcompthermo/shgo/.en_ZA
dc.description.departmentChemical Engineeringen_ZA
dc.description.embargo2019-10-01
dc.description.librarianhj2018en_ZA
dc.description.urihttp://link.springer.com/journal/10898en_ZA
dc.identifier.citationEndres, S.C., Sandrock, C. & Focke, W.W. A simplicial homology algorithm for Lipschitz optimisation. Journal of Global Optimization (2018) 72: 181-217. https://doi.org/10.1007/s10898-018-0645-yen_ZA
dc.identifier.issn0925-5001 (print)
dc.identifier.issn1573-2916 (online)
dc.identifier.other10.1007/s10898-018-0645-y
dc.identifier.urihttp://hdl.handle.net/2263/64460
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2018. The original publication is available at : http://link.springer.comjournal/10898.en_ZA
dc.subjectEvolutionary algorithmsen_ZA
dc.subjectSimplicial homology global optimisation (SHGO)en_ZA
dc.subjectOptimisation problemsen_ZA
dc.subjectObjective functionsen_ZA
dc.subjectNumerical experimentsen_ZA
dc.subjectGlobal optimisationen_ZA
dc.subjectEvolutionen_ZA
dc.subjectComputational homologyen_ZA
dc.subjectCombinatorial topologyen_ZA
dc.subjectTopologyen_ZA
dc.subjectFunction evaluationen_ZA
dc.subjectTopographical global optimisation (TGO)en_ZA
dc.subjectDifferential evolution (DE)en_ZA
dc.subjectBasinhopping (BH)en_ZA
dc.titleA simplicial homology algorithm for Lipschitz optimisationen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Endres_Simplicial_2018.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article
Loading...
Thumbnail Image
Name:
Endres_SimplicialSuppl_2018.pdf
Size:
111.33 KB
Format:
Adobe Portable Document Format
Description:
Supplementary Material

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: