Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis
dc.contributor.author | Cooper, James W. | |
dc.contributor.author | Hu, Yan | |
dc.contributor.author | Beyyoudh, Leila | |
dc.contributor.author | Dasgan, H. Yildiz | |
dc.contributor.author | Kunert, Karl J. | |
dc.contributor.author | Beveridge, Christine A. | |
dc.contributor.author | Foyer, Christine H. | |
dc.date.accessioned | 2018-06-25T09:50:47Z | |
dc.date.issued | 2018-06 | |
dc.description.abstract | Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here, we characterized the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, and rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. Moreover, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling‐induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in the Arabidopsis max3‐9, max4‐1, and max2‐1 mutants that are defective in SL synthesis or signalling. When grown on agar plates, the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24, decreased leaf area in the wild type, max3‐9, and max4‐1 mutants but not in max2‐1 in the absence of stress. In addition, a chilling‐induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance. | en_ZA |
dc.description.department | Forestry and Agricultural Biotechnology Institute (FABI) | en_ZA |
dc.description.department | Plant Production and Soil Science | en_ZA |
dc.description.embargo | 2019-06-01 | |
dc.description.librarian | hj2018 | en_ZA |
dc.description.sponsorship | BBSRC, Grant/Award Number: BB/K501839/1 | en_ZA |
dc.description.uri | https://wileyonlinelibrary.com/journal/pce | en_ZA |
dc.identifier.citation | Cooper JW, Hu Y, Beyyoudh L, et al. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ. 2018;41:1298–1310. https://doi.org/10.1111/pce.13147. | en_ZA |
dc.identifier.issn | 0140-7791 (print) | |
dc.identifier.issn | 1365-3040 (online) | |
dc.identifier.other | 10.1111/pce.13147 | |
dc.identifier.uri | http://hdl.handle.net/2263/65235 | |
dc.language.iso | en | en_ZA |
dc.publisher | Wiley | en_ZA |
dc.rights | © 2018 John Wiley & Sons Ltd. This is the pre-peer reviewed version of the following article : Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ. 2018;41:1298–1310, 2018, doi : 10.1111/pce.13147. The definite version is available at : https://wileyonlinelibrary.com/journal/pce. | en_ZA |
dc.subject | Strigolactones (SL) | en_ZA |
dc.subject | Chilling stress | en_ZA |
dc.subject | Cystatins | en_ZA |
dc.subject | Legumes | en_ZA |
dc.subject | Photosynthesis | en_ZA |
dc.subject | Oryzacystatin I (OCI) | en_ZA |
dc.subject | Lotus japonicus | en_ZA |
dc.subject | Stress tolerance | en_ZA |
dc.subject | Ribulose bisphosphate carboxylase/oxygenase (RuBisCO) | en_ZA |
dc.subject | Freezing tolerance | en_ZA |
dc.subject | F-box protein | en_ZA |
dc.subject | Programmed cell death (PCD) | en_ZA |
dc.subject | Soybean (Glycine max) | en_ZA |
dc.title | Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis | en_ZA |
dc.type | Postprint Article | en_ZA |