Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces

dc.contributor.authorSaleem, N.
dc.contributor.authorAbbas, Mujahid
dc.contributor.authorRaza, Z.
dc.contributor.emailmujahid.abbas@up.ac.zaen_ZA
dc.date.accessioned2016-08-11T13:47:46Z
dc.date.available2016-08-11T13:47:46Z
dc.date.issued2016
dc.description.abstractIn this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuzzy metric spaces and famous Banach contraction principle.en_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.librarianam2016en_ZA
dc.description.urihttp://ijfs.usb.ac.iren_ZA
dc.identifier.citationSalkeem, N, Abbas, M & Raza, Z 2016, 'Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces', Iranian Journal of Fuzzy Systems, vol. 13, no. 3, pp. 113-124.en_ZA
dc.identifier.issn1735-0654
dc.identifier.urihttp://hdl.handle.net/2263/56282
dc.language.isoen_USen_ZA
dc.publisherUniversity of Sistan and Baluchestanen_ZA
dc.rightsUniversity of Sistan and Baluchestanen_ZA
dc.subjectFuzzy metric spaceen_ZA
dc.subjectOptimal approximate solutionen_ZA
dc.subjectFuzzy proximal contractionen_ZA
dc.subjectFuzzy expansiveen_ZA
dc.subjectFuzzy isometryen_ZA
dc.subjects-Increasing sequenceen_ZA
dc.subjectt-Normen_ZA
dc.titleOptimal coincidence best approximation solution in non-Archimedean fuzzy metric spacesen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Saleem_Optical_2016.pdf
Size:
313.56 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: