Synthesis and characterisation of DOTA-kisspeptin-10 as a potential gallium-68/lutetium-177 pan-tumour radiopharmaceutical
| dc.contributor.author | Kleynhans, Janke | |
| dc.contributor.author | Reeve, Robert | |
| dc.contributor.author | Driver, Cathryn Helena Stanford | |
| dc.contributor.author | Marjanovic-Painter, Biljana | |
| dc.contributor.author | Sathekge, Mike Machaba | |
| dc.contributor.author | Zeevaart, Jan Rijn | |
| dc.contributor.author | Ebenhan, Thomas | |
| dc.contributor.author | Millar, Robert P. | |
| dc.contributor.email | bob.millar@up.ac.za | |
| dc.date.accessioned | 2025-11-14T05:55:37Z | |
| dc.date.available | 2025-11-14T05:55:37Z | |
| dc.date.issued | 2025-03 | |
| dc.description | DATA AVAILABILITY STATEMENT : The data that support the findings of this study are available from the corresponding author upon reasonable request. | |
| dc.description.abstract | Kisspeptin (KISS1) and its cognate receptor (KISS1R) are implicated in the progression of various cancers. A gallium-68 labelled kisspeptin-10 (KP10), the minimal biologically active structure, has potential as a pan-tumour radiopharmaceutical for the detection of cancers. Furthermore, a lutetium-177 labelled KP10 could find therapeutic application in treating oncological diseases. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was attached to the NH2-terminus of KP10 as we posited from our previous publications that this modification would not impair biological activity. Here, we showed that the biological activity, as monitored by stimulation of inositol phosphate accumulation in HEK293 transfected with the KISS1R gene, was indeed similar for KP10 and DOTA-KP10. The optimisation of radiolabelling with gallium-68 and lutetium-177 is described. Stability in serum, plasma and whole blood was also investigated. Pharmacokinetics and biodistribution were established with micro-PET/CT (positron emission tomography/computerised tomography) and ex vivo measurements. Dynamic studies with micro-PET/CT demonstrated that background clearance for the radiopharmaceutical was rapid with a blood half-life of 18 ± 3 min. DOTA-KP10 demonstrated preserved functionality at KISS1R and good blood clearance. These results lay the foundation for the further development of DOTA-KP10 analogues that have high binding affinity along with proteolytic resistance. | |
| dc.description.department | Immunology | |
| dc.description.department | Nuclear Medicine | |
| dc.description.librarian | hj2025 | |
| dc.description.sdg | SDG-03: Good health and well-being | |
| dc.description.sponsorship | The National Research Foundation and the Medical Research Council (South Africa). | |
| dc.description.uri | https://onlinelibrary.wiley.com/journal/13652826 | |
| dc.identifier.citation | Kleynhans, J., Reeve, R., Driver, C.H.S. et al. 2025, 'Synthesis and characterisation of DOTA-kisspeptin-10 as a potential gallium-68/lutetium-177 pan-tumour radiopharmaceutical', Journal of Neuroendocrinology, vol. 37, no. 3, art. e13487, pp. 1-11, doi : 10.1111/jne.13487. | |
| dc.identifier.issn | 0953-8194 (print) | |
| dc.identifier.issn | 1365-2826 (online) | |
| dc.identifier.other | 10.1111/jne.13487 | |
| dc.identifier.uri | http://hdl.handle.net/2263/105286 | |
| dc.language.iso | en | |
| dc.publisher | Wiley | |
| dc.rights | © 2025 The Author(s). Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology. This is an open access article under the terms of the Creative Commons Attribution License. | |
| dc.subject | Antimetastatic | |
| dc.subject | Peptide receptor radionuclide therapy (PRRT) | |
| dc.subject | Pharmacokinetics | |
| dc.subject | Positron emission tomography (PET) | |
| dc.subject | Tumorigenesis | |
| dc.title | Synthesis and characterisation of DOTA-kisspeptin-10 as a potential gallium-68/lutetium-177 pan-tumour radiopharmaceutical | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
