Global optimisation through hyper-heuristics : unfolding population-based metaheuristics

Loading...
Thumbnail Image

Authors

Cruz-Duarte, Jorge M.
Ortiz-Bayliss, Jose C.
Amaya, Ivan
Pillay, Nelishia

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Optimisation has been with us since before the first humans opened their eyes to natural phenomena that inspire technological progress. Nowadays, it is quite hard to find a solver from the overpopulation of metaheuristics that properly deals with a given problem. This is even considered an additional problem. In this work, we propose a heuristic-based solver model for continuous optimisation problems by extending the existing concepts present in the literature. We name such solvers ‘unfolded’ metaheuristics (uMHs) since they comprise a heterogeneous sequence of simple heuristics obtained from delegating the control operator in the standard metaheuristic scheme to a high-level strategy. Therefore, we tackle the Metaheuristic Composition Optimisation Problem by tailoring a particular uMH that deals with a specific application. We prove the feasibility of this model via a two-fold experiment employing several continuous optimisation problems and a collection of diverse population-based operators with fixed dimensions from ten well-known metaheuristics in the literature. As a high-level strategy, we utilised a hyper-heuristic based on Simulated Annealing. Results demonstrate that our proposed approach represents a very reliable alternative with a low computational cost for tackling continuous optimisation problems with a tailored metaheuristic using a set of agents. We also study the implication of several parameters involved in the uMH model and their influence over the solver performance.

Description

Keywords

Metaheuristic, Hyper-heuristic, Optimisation, Algorithm, Unfolded metaheuristic

Sustainable Development Goals

Citation

Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C.; Amaya, I.; Pillay, N. Global Optimisation through Hyper-Heuristics: Unfolding Population-Based Metaheuristics. Applied Sciences 2021, 11, 5620. https://doi.org/10.3390/app11125620.