A generalized Bayesian nonlinear mixed‐effects regression model for zero‐inflated longitudinal count data in tuberculosis trials

dc.contributor.authorBurger, Divan Aristo
dc.contributor.authorSchall, Robert
dc.contributor.authorJacobs, Rianne
dc.contributor.authorChen, Ding-Geng (Din)
dc.date.accessioned2019-11-04T11:25:11Z
dc.date.issued2019-07
dc.description.abstractIn this paper, we investigate Bayesian generalized nonlinear mixed‐effects (NLME) regression models for zero‐inflated longitudinal count data. The methodology is motivated by and applied to colony forming unit (CFU) counts in extended bactericidal activity tuberculosis (TB) trials. Furthermore, for model comparisons, we present a generalized method for calculating the marginal likelihoods required to determine Bayes factors. A simulation study shows that the proposed zero‐inflated negative binomial regression model has good accuracy, precision, and credibility interval coverage. In contrast, conventional normal NLME regression models applied to log‐transformed count data, which handle zero counts as left censored values, may yield credibility intervals that undercover the true bactericidal activity of anti‐TB drugs. We therefore recommend that zero‐inflated NLME regression models should be fitted to CFU count on the original scale, as an alternative to conventional normal NLME regression models on the logarithmic scale.en_ZA
dc.description.departmentStatisticsen_ZA
dc.description.embargo2020-07-01
dc.description.librarianhj2019en_ZA
dc.description.sponsorshipThe National Research Foundation, South Africa (South Africa DST‐NRF‐SAMRC SARChI Research Chair in Biostatistics, Grant number 114613).en_ZA
dc.description.urihttp://wileyonlinelibrary.com/journal/psten_ZA
dc.identifier.citationBurger DA, Schall R, Jacobs R, Chen D-G. A generalized Bayesian nonlinear mixed-effects regression model for zero-inflated longitudinal count data in tuberculosis trials. Pharmaceutical Statistics. 2019;18:420–432. https://doi.org/10.1002/pst.1933.en_ZA
dc.identifier.issn1539-1604 (print)
dc.identifier.issn1539-1612 (online)
dc.identifier.other10.1002/pst.1933
dc.identifier.urihttp://hdl.handle.net/2263/72124
dc.language.isoenen_ZA
dc.publisherWileyen_ZA
dc.rights© 2019 John Wiley & Sons, Ltd. This is the pre-peer reviewed version of the following article : A generalized Bayesian nonlinear mixed-effects regression model for zero-inflated longitudinal count data in tuberculosis trials. Pharmaceutical Statistics. 2019;18:420–432. https://doi.org/10.1002/pst.1933. The definite version is available at : wileyonlinelibrary.com/journal/pst.en_ZA
dc.subjectNonlinear mixed‐effects (NLME)en_ZA
dc.subjectColony forming unit (CFU)en_ZA
dc.subjectTuberculosis (TB)en_ZA
dc.subjectBayesianen_ZA
dc.subjectBactericidal activityen_ZA
dc.subjectLongitudinalen_ZA
dc.subjectMixed‐effectsen_ZA
dc.subjectZero inflateden_ZA
dc.subjectBactericidal activityen_ZA
dc.subjectSterilizing activityen_ZA
dc.subjectPoissonen_ZA
dc.subjectPyrazinamideen_ZA
dc.subjectMoxifloxacinen_ZA
dc.subjectCombinationen_ZA
dc.subjectPretomanid (PA‐824)en_ZA
dc.subjectInferenceen_ZA
dc.subjectCultureen_ZA
dc.titleA generalized Bayesian nonlinear mixed‐effects regression model for zero‐inflated longitudinal count data in tuberculosis trialsen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Burger_Generalized_2019.pdf
Size:
463.04 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article
Loading...
Thumbnail Image
Name:
Burger_GeneralizedAppen_2019.pdf
Size:
170.62 KB
Format:
Adobe Portable Document Format
Description:
Appendices
Loading...
Thumbnail Image
Name:
Burger_GeneralizedSuppl_2019.pdf
Size:
137.71 KB
Format:
Adobe Portable Document Format
Description:
Supplementary Material

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: