Unsupervised land cover change detection : meaningful sequential time series analysis

dc.contributor.authorSalmon, Brian Paxton
dc.contributor.authorOlivier, Jan Corne
dc.contributor.authorWessels, K.J. (Konrad)
dc.contributor.authorKleynhans, Waldo
dc.contributor.authorVan den Bergh, Frans
dc.contributor.authorSteenkamp, Karen C.
dc.date.accessioned2011-04-19T10:44:01Z
dc.date.available2011-04-19T10:44:01Z
dc.date.issued2011-06
dc.description.abstractAn automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short term Fourier transform coefficients computed over subsequences of 8-day composite MODerate-resolution Imaging Spectroradiometer (MODIS) surface reflectance data that were extracted with a temporal sliding window. The method uses a feature extraction process that creates meaningful sequential time series that can be analyzed and processed for change detection. The method was evaluated on real and simulated land cover change examples and obtained a change detection accuracy exceeding 76% on real land cover conversion and more than 70% on simulated land cover conversion.en_US
dc.identifier.citationSalmon, BP, Olivier, JC, Wessels, KJ, Kleynhans, W, Van den Bergh, F & Steenkamp, KC 2011, 'Unsupervised land cover change detection : meaningful sequential time series analysis', IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, vol. 4, no. 2, pp. 327-335, doi: 10.1109/JSTARS.2010.2053918. [http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?reload=true&punumber=4609443]en_US
dc.identifier.issn1939-1404
dc.identifier.other10.1109/JSTARS.2010.2053918
dc.identifier.urihttp://hdl.handle.net/2263/16336
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2010 IEEEen_US
dc.subjectChange detectionen_US
dc.subjectClusteringen_US
dc.subjectSatelliteen_US
dc.subjectTime seriesen_US
dc.subject.lcshEarth -- Surface -- Observationsen
dc.subject.lcshLand cover -- Observationsen
dc.subject.lcshEarth -- Photographs from spaceen
dc.subject.lcshEarth -- Remote sensing imagesen
dc.titleUnsupervised land cover change detection : meaningful sequential time series analysisen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Salmon_Unsupervised(2010).pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.44 KB
Format:
Item-specific license agreed upon to submission
Description: