Cumulative viral load as a predictor of CD4+ T-cell response to antiretroviral therapy using Bayesian statistical models

dc.contributor.authorSempa, Joseph B.
dc.contributor.authorRossouw, Theresa M.
dc.contributor.authorLesaffre, Emmanuel
dc.contributor.authorNieuwoudt, Martin
dc.date.accessioned2020-07-13T12:36:21Z
dc.date.available2020-07-13T12:36:21Z
dc.date.issued2019-11-13
dc.descriptionS1 Appendix. WinBugs/OpenBugs code for all the models analyzed.en_ZA
dc.descriptionS2 Appendix. Additional tables and figures.en_ZA
dc.description.abstractINTRODUCTION : There are Challenges in statistically modelling immune responses to longitudinal HIV viral load exposure as a function of covariates. We define Bayesian Markov Chain Monte Carlo mixed effects models to incorporate priors and examine the effect of different distributional assumptions. We prospectively fit these models to an as-yet-unpublished data from the Tshwane District Hospital HIV treatment clinic in South Africa, to determine if cumulative log viral load, an indicator of long-term viral exposure, is a valid predictor of immune response. METHODS : Models are defined, to express ‘slope’, i.e. mean annual increase in CD4 counts, and ‘asymptote’, i.e. the odds of having a CD4 count ≥500 cells/μL during antiretroviral treatment, as a function of covariates and random-effects. We compare the effect of using informative versus non-informative prior distributions on model parameters. Models with cubic splines or Skew-normal distributions are also compared using the conditional Deviance Information Criterion. RESULTS : The data of 750 patients are analyzed. Overall, models adjusting for cumulative log viral load provide a significantly better fit than those that do not. An increase in cumulative log viral load is associated with a decrease in CD4 count slope (19.6 cells/μL (95% credible interval: 28.26, 10.93)) and a reduction in the odds of achieving a CD4 counts ≥500 cells/μL (0.42 (95% CI: 0.236, 0.730)) during 5 years of therapy. Using informative priors improves the cumulative log viral load estimate, and a skew-normal distribution for the random-intercept and measurement error results is a better fit compared to using classical Gaussian distributions. DISCUSSION : We demonstrate in an unpublished South African cohort that cumulative log viral load is a strong and significant predictor of both CD4 count slope and asymptote. We argue that Bayesian methods should be used more frequently for such data, given their flexibility to incorporate prior information and non-Gaussian distributions.en_ZA
dc.description.departmentImmunologyen_ZA
dc.description.librarianhj2020en_ZA
dc.description.sponsorshipSouth African Department of Science and Technology; National Research Foundation; Stellenbosch University.en_ZA
dc.description.urihttp://www.plosone.orgen_ZA
dc.identifier.citationSempa, J.B., Rossouw, T.M., Lesaffre, E. et al. Cumulative viral load as a predictor of CD4+ T-cell response to antiretroviral therapy using Bayesian statistical models. PLoS ONE 2019, 14(11): e0224723. https://DOI.org/10.1371/journal.pone.0224723.en_ZA
dc.identifier.issn1932-6203 (online)
dc.identifier.other10.1371/journal.pone.0224723
dc.identifier.urihttp://hdl.handle.net/2263/75173
dc.language.isoenen_ZA
dc.publisherPublic Library of Scienceen_ZA
dc.rights© 2019 Sempa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License.en_ZA
dc.subjectBayesian statistical modelsen_ZA
dc.subjectCumulative viral loaden_ZA
dc.subjectCD4+ T-cell responseen_ZA
dc.subjectAntiretroviral therapy (ART)en_ZA
dc.titleCumulative viral load as a predictor of CD4+ T-cell response to antiretroviral therapy using Bayesian statistical modelsen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Sempa_Cumulative_2019.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Sempa_CumulativeAppenS1_2019.pdf
Size:
167.65 KB
Format:
Adobe Portable Document Format
Description:
Appendix S1
Loading...
Thumbnail Image
Name:
Sempa_CumulativeAppenS2_2019.pdf
Size:
169.91 KB
Format:
Adobe Portable Document Format
Description:
Appendix S2

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: