Spectrally regularised LVMs : a spectral regularisation framework for latent variable models designed for single-channel applications

dc.contributor.authorBalshaw, Ryan Cameron
dc.contributor.authorHeyns, P.S. (Philippus Stephanus)
dc.contributor.authorWilke, Daniel Nicolas
dc.contributor.authorSchmidt, Stephan
dc.contributor.emailstephan.heyns@up.ac.za
dc.date.accessioned2025-11-06T12:51:45Z
dc.date.available2025-11-06T12:51:45Z
dc.date.issued2025-09
dc.description.abstractLatent variable models (LVMs) are commonly used to capture the underlying dependencies, patterns, and hidden structures in observed data. Source duplication is a by-product of the data Hankelisation pre-processing step common to single-channel LVM applications, which hinders practical LVM utilisation. In this article, a Python package titled spectrally-regularised-LVMs is presented. The proposed package addresses the source duplication issue by adding a novel spectral regularisation term. This package provides a framework for spectral regularisation in single-channel LVM applications, thereby making it easier to investigate and utilise LVMs with spectral regularisation. This is achieved via symbolic or explicit representations of potential LVM objective functions, which are incorporated into a framework that uses spectral regularisation during the LVM parameter estimation process. This package aims to provide a consistent linear LVM optimisation framework incorporating spectral regularisation and caters to single-channel time-series applications.
dc.description.departmentMechanical and Aeronautical Engineering
dc.description.librarianam2025
dc.description.sdgSDG-07: Affordable and clean energy
dc.description.sdgSDG-09: Industry, innovation and infrastructure
dc.description.sdgSDG-12: Responsible consumption and production
dc.description.sdgSDG-13: Climate action
dc.description.urihttps://www.sciencedirect.com/journal/softwarex
dc.identifier.citationBalshaw, R., Heyns, P.S., Wilke, D.N. et al. 2025,'Spectrally regularised LVMs : a spectral regularisation framework for latent variable models designed for single-channel applications', SoftwareX, vol. 31, art. 102187, pp. 1-7. https://doi.org/10.1016/j.softx.2025.102187.
dc.identifier.issn2352-7110
dc.identifier.other10.1016/j.softx.2025.102187
dc.identifier.urihttp://hdl.handle.net/2263/105149
dc.language.isoen
dc.publisherElsevier
dc.rights© 2025 The Authors. This is an open access article under the CC BY license.
dc.subjectLatent variable models (LVMs)
dc.subjectSpectral regularisation
dc.subjectPython
dc.titleSpectrally regularised LVMs : a spectral regularisation framework for latent variable models designed for single-channel applications
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Balshaw_Spectral_2025.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: