Autoencoding variational Bayes for latent Dirichlet allocation

dc.contributor.authorWolpe, Zach
dc.contributor.authorDe Waal, Alta
dc.date.accessioned2020-07-22T11:06:16Z
dc.date.available2020-07-22T11:06:16Z
dc.date.issued2019
dc.description.abstractMany posterior distributions take intractable forms and thus require variational inference where analytical solutions cannot be found. Variational Inference and Monte Carlo Markov Chains (MCMC) are es- tablished mechanism to approximate these intractable values. An alter- native approach to sampling and optimisation for approximation is a di- rect mapping between the data and posterior distribution. This is made possible by recent advances in deep learning methods. Latent Dirichlet Allocation (LDA) is a model which o ers an intractable posterior of this nature. In LDA latent topics are learnt over unlabelled documents to soft cluster the documents. This paper assesses the viability of learning latent topics leveraging an autoencoder (in the form of Autoencoding variational Bayes) and compares the mimicked posterior distributions to that achieved by VI. After conducting various experiments the proposed AEVB delivers inadequate performance. Under Utopian conditions com- parable conclusion are achieved which are generally unattainable. Fur- ther, model speci cation becomes increasingly complex and deeply cir- cumstantially dependant - which is in itself not a deterrent but does war- rant consideration. In a recent study, these concerns were highlighted and discussed theoretically. We con rm the argument empirically by dissect- ing the autoencoder's iterative process. In investigating the autoencoder, we see performance degrade as models grow in dimensionality. Visual- ization of the autoencoder reveals a bias towards the initial randomised topics.en_ZA
dc.description.departmentStatisticsen_ZA
dc.description.librarianam2020en_ZA
dc.description.urihttp://ceur-ws.orgen_ZA
dc.identifier.citationWolpe Z. & De Waal, A. 2019, 'Autoencoding variational Bayes for latent Dirichlet allocation', CEUR Workshop Proceedings, vol. 2540, pp. 1-12.en_ZA
dc.identifier.issn1613-0073
dc.identifier.urihttp://hdl.handle.net/2263/75390
dc.language.isoenen_ZA
dc.publisherCEUR Workshop Proceedingsen_ZA
dc.rights© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).en_ZA
dc.subjectAutoencodersen_ZA
dc.subjectNatural language processing (NLP)en_ZA
dc.subjectDeep learningen_ZA
dc.subjectVariational inferenceen_ZA
dc.subjectMonte Carlo Markov chains (MCMC)en_ZA
dc.subjectLatent Dirichlet allocation (LDA)en_ZA
dc.titleAutoencoding variational Bayes for latent Dirichlet allocationen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wolpe_Autoencoding_2019.pdf
Size:
553.67 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: