Identifying potential areas of expansion for the endangered brown bear (Ursus arctos) population in the cantabrian mountains (NW Spain)
dc.contributor.author | Zarzo-Arias, Alejandra | |
dc.contributor.author | Penteriani, Vincenzo | |
dc.contributor.author | Delgado, Marıa del Mar | |
dc.contributor.author | Torre, Paloma Peo | |
dc.contributor.author | Garcia-Gonzalez, Ricardo | |
dc.contributor.author | Mateo-Sanchez, Marıa Cruz | |
dc.contributor.author | Garcıa, Pablo Vazquez | |
dc.contributor.author | Dalerum, Fredrik | |
dc.date.accessioned | 2020-08-25T07:45:31Z | |
dc.date.available | 2020-08-25T07:45:31Z | |
dc.date.issued | 2019-01 | |
dc.description | S1 Fig. Brown bear occurrence data and location of the study area in Europe. https://doi.org/10.1371/journal.pone.0209972.s001 | en_ZA |
dc.description | S2 Fig. Evaluation metrics for 130 candidate models containing different levels of complexity defined by a range of five feature type combinations including linear (L), quadratic (Q), product (P), threshold (T) and hinge (H) features, each evaluated over a range of regularization multipliers ranging from 0 to 10, for (a) the coarse and (b) fine scales of the distribution of the Cantabrian brown bear in Asturias. Evaluation metrics include delta AICc, which is the difference in AICc (Akaikes Information Criterion corrected for small sample sizes, calculated as the sum of the log transformed raw output penalized by the number of model parameters), AUC test, which is the AUC (area Under the receiving operator characteristics Curve) score for the testing data set, AUC diff, which is the difference in AUC scores between the training and testing data sets, and OR min, which is a threshold dependent statistic corresponds to the proportion of testing localities that have MaxEnt output values lower than the value associated with the training locality with the lowest value. https://doi.org/10.1371/journal.pone.0209972.s002 | en_ZA |
dc.description | S3 Fig. Jacknife evaluations of variable contributions to the (a) coarse and (b) fine scale models. The variables with the highest gain when used in isolation are slope for the coarse scale (a) and forest cover foir the fine scale model (b). These variables therefore seem to have provided the most useful information by themselves for each scale. The variables that decreased the gain most when omitted, and thus possessed the greatest amount of information not present in the other variables, were slope for the coarse scale (a) and population density for the fine scale model (b). https://doi.org/10.1371/journal.pone.0209972.s003 | en_ZA |
dc.description | S4 Fig. Output of the coarse scale model with a 5 x 5 km resolution. The map presents a clog-log transformation of the raw MaxEnt output, which can be interpreted as a probability of brown bear range occurrence. https://doi.org/10.1371/journal.pone.0209972.s004 | en_ZA |
dc.description | S5 Fig. Schematic examples of incremental range expansion (a) out of an initial core area as well as (b) a patchy range expansion were no area is occupied two consecutive years, their nestedness values as well as the association matrices used to calculate nestedness. https://doi.org/10.1371/journal.pone.0209972.s005 | en_ZA |
dc.description | S6 Fig. Associations between predicted suitability estimated from the coarse scale model each of the included environmental predictors. https://doi.org/10.1371/journal.pone.0209972.s006 | en_ZA |
dc.description | S7 Fig. Associations between predicted suitability estimated from the fine scale model each of the included environmental predictors. https://doi.org/10.1371/journal.pone.0209972.s007 | en_ZA |
dc.description | S1 Table. Description, source and original format of the 25 environmental variables initially developed for the construction of the models. Variables marked with * are the ones not correlated and ultimately used in the modelling. https://doi.org/10.1371/journal.pone.0209972.s008 | en_ZA |
dc.description | S2 Table. Variable contribution to the construction of the coarse and fine scale models. https://doi.org/10.1371/journal.pone.0209972.s009 | en_ZA |
dc.description | S3 Table. Centre coordinates of the 5 x 5 km grids classed as bear home range used as bear occurrence data in the coarse scale model. https://doi.org/10.1371/journal.pone.0209972.s010 | en_ZA |
dc.description | S4 Table. Centre coordinates of the 1 x 1 km grids that contained a bear observation used as bear occurrence data in the fine scale model. https://doi.org/10.1371/journal.pone.0209972.s011 | en_ZA |
dc.description.abstract | Many large carnivore populations are expanding into human-modified landscapes and the subsequent increase in coexistence between humans and large carnivores may intensify various types of conflicts. A proactive management approach is critical to successful mitigation of such conflicts. The Cantabrian Mountains in Northern Spain are home to the last remaining native brown bear (Ursus arctos) population of the Iberian Peninsula, which is also amongst the most severely threatened European populations, with an important core group residing in the province of Asturias. There are indications that this small population is demographically expanding its range. The identification of the potential areas of brown bear range expansion is crucial to facilitate proactive conservation and management strategies towards promoting a further recovery of this small and isolated population. Here, we used a presence-only based maximum entropy (MaxEnt) approach to model habitat suitability and identify the areas in the Asturian portion of the Cantabrian Mountains that are likely to be occupied in the future by this endangered brown bear population following its range expansion. We used different spatial scales to identify brown bear range suitability according to different environmental, topographic, climatic and human impact variables. Our models mainly show that: (1) 4977 km2 are still available as suitable areas for bear range expansion, which represents nearly half of the territory of Asturias; (2) most of the suitable areas in the western part of the province are already occupied (77% of identified areas, 2820 km2), 41.4% of them occurring inside protected areas, which leaves relatively limited good areas for further expansion in this part of the province, although there might be more suitable areas in surrounding provinces; and (3) in the eastern sector of the Asturian Cantabrian Mountains, 62% (2155 km2) of the land was classified as suitable, and this part of the province hosts 44.3% of the total area identified as suitable areas for range expansion. Our results further highlight the importance of increasing: (a) the connectivity between the currently occupied western part of Asturias and the areas of potential range expansion in the eastern parts of the province; and (b) the protection of the eastern sector of the Cantabrian Mountains, where most of the future population expansion may be expected. | en_ZA |
dc.description.department | Mammal Research Institute | en_ZA |
dc.description.department | Zoology and Entomology | en_ZA |
dc.description.librarian | pm2020 | en_ZA |
dc.description.sponsorship | The Gobierno del Principado de Asturias (with FEDER co-financing); the Spanish Ministry of Economy Industry and Competitiveness ((MINECO); the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU) as well as Ramon & Cajal research contracts from the Spanish Ministry of Economy, Industry and Competitiveness. | en_ZA |
dc.description.uri | http://www.plosone.org/ | en_ZA |
dc.identifier.citation | Zarzo-Arias A, Penteriani V, Delgado MdM, Peón Torre P, García-González R, Mateo-Sánchez MC, et al. (2019) Identifying potential areas of expansion for the endangered brown bear (Ursus arctos) population in the Cantabrian Mountains (NW Spain). PLoS ONE 14(1): e0209972. https://doi.org/10.1371/journal.pone.0209972. | en_ZA |
dc.identifier.issn | 1932-6203 (online) | |
dc.identifier.other | 10.1371/journal. pone.0209972 | |
dc.identifier.uri | http://hdl.handle.net/2263/75881 | |
dc.language.iso | en | en_ZA |
dc.publisher | Public Library of Science | en_ZA |
dc.rights | © 2019 Zarzo-Arias et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. | en_ZA |
dc.subject | Ursus arctos | en_ZA |
dc.subject | Population | en_ZA |
dc.subject | Demography | en_ZA |
dc.subject | Human-modified landscapes | en_ZA |
dc.subject | Northern Spain | en_ZA |
dc.title | Identifying potential areas of expansion for the endangered brown bear (Ursus arctos) population in the cantabrian mountains (NW Spain) | en_ZA |
dc.type | Article | en_ZA |
Files
Original bundle
1 - 5 of 12
Loading...
- Name:
- ZarzoArias_Identifying_2019.pdf
- Size:
- 1.12 MB
- Format:
- Adobe Portable Document Format
- Description:
- Article
Loading...
- Name:
- ZarzoArias_IdentifyingFigS1_2019.pdf
- Size:
- 174.87 KB
- Format:
- Adobe Portable Document Format
- Description:
- Figure S1
Loading...
- Name:
- ZarzoArias_IdentifyingFigS2_2019.pdf
- Size:
- 261.82 KB
- Format:
- Adobe Portable Document Format
- Description:
- Figure S2
Loading...
- Name:
- ZarzoArias_IdentifyingFigS3_2019.pdf
- Size:
- 160.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Figure S3
Loading...
- Name:
- ZarzoArias_IdentifyingFigS4_2019.pdf
- Size:
- 116.75 KB
- Format:
- Adobe Portable Document Format
- Description:
- Figure S4
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: