A contaminated generalized t model for cryptocurrency returns

dc.contributor.advisorBekker, Andriette, 1958-
dc.contributor.coadvisorFerreira, Johan
dc.contributor.coadvisorArashi, Mohammad
dc.contributor.emailthembinkosimanyeruke@gmail.comen_US
dc.contributor.postgraduateManyeruke, Thembinkosi Johannes
dc.date.accessioned2025-02-03T19:09:54Z
dc.date.available2025-02-03T19:09:54Z
dc.date.created2025-05
dc.date.issued2025-02
dc.descriptionMini Dissertation (MSc Advanced Data Analytics))--University of Pretoria, 2025.en_US
dc.description.abstractIn financial analytics, a key aim of currency data analysis is to determine the distribution of returns. Considering the extensive utilization of cryptocurrencies, it is essential to offer a highly flexible model for distributions with heavier tails to analyze bitcoin data. A recent study by Punzo and Bagnato (2021) demonstrated that cryptocurrency returns have traits of high peakedness, heavy tails, and large excess kurtosis. To improve control over tail behaviour in flexible models, we recommend employing the generalized elliptical family of distributions for cryptocurrency returns. We systematically construct this family of distributions, obtaining the Bernoulli-Laplace distribution from Punzo and Bagnato (2021) and the contaminated generalized t distribution as constituents of this family. Both distributions have heavy tails, pronounced peaks, and large adjustable kurtosis. Additionally, the suggested framework allows for the division of the real line into two regions: one containing typical points and the other containing atypical points. We illustrate the effectiveness of the suggested framework utilizing four cryptocurrencies: USDJ USD, Frax USD, Gnosis USD, and Ethereum USD, in comparison to alternative distributions frequently employed in financial literature. The findings demonstrated that the suggested framework surpasses the other evaluated distributions. Moreover, the contaminated generalized t distribution is optimal for data with significant excess kurtosis, whereas the Bernoulli-Laplace distribution is preferable for data with comparatively lower kurtosis, while still leptokurtic.en_US
dc.description.availabilityUnrestricteden_US
dc.description.degreeMSc (Advanced Data Analytics)en_US
dc.description.departmentStatisticsen_US
dc.description.facultyFaculty of Natural and Agricultural Sciencesen_US
dc.description.sdgSDG-01: No povertyen_US
dc.description.sdgSDG-02: Zero hungeren_US
dc.description.sdgSDG-08: Decent work and economic growthen_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sponsorshipStatometen_US
dc.description.sponsorshipFNB Broader Africaen_US
dc.identifier.citation*en_US
dc.identifier.doiN/Aen_US
dc.identifier.otherA2025en_US
dc.identifier.urihttp://hdl.handle.net/2263/100454
dc.language.isoenen_US
dc.publisherUniversity of Pretoria
dc.rights© 2023 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subjectUCTDen_US
dc.subjectSustainable Development Goals (SDGs)en_US
dc.subjectAdjustable kurtosisen_US
dc.subjectContaminated distributionen_US
dc.subjectGeneralized elliptical familyen_US
dc.subjectHighly peakeden_US
dc.subjectHeavy taileden_US
dc.titleA contaminated generalized t model for cryptocurrency returnsen_US
dc.typeMini Dissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Manyeruke_Contaminated_2024.pdf
Size:
6.49 MB
Format:
Adobe Portable Document Format
Description:
Mini Dissertation

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: