Towards a generalised metaheuristic model for continuous optimisation problems

dc.contributor.authorCruz-Duarte, Jorge M.
dc.contributor.authorOrtiz-Bayliss, Jose C.
dc.contributor.authorAmaya, Ivan
dc.contributor.authorShi, Yong
dc.contributor.authorTerashima-Marin, Hugo
dc.contributor.authorPillay, Nelishia
dc.contributor.emailnpillay@cs.up.ac.zaen_ZA
dc.date.accessioned2021-06-18T14:00:28Z
dc.date.available2021-06-18T14:00:28Z
dc.date.issued2020-11-17
dc.description.abstractMetaheuristics have become a widely used approach for solving a variety of practical problems. The literature is full of diverse metaheuristics based on outstanding ideas and with proven excellent capabilities. Nonetheless, oftentimes metaheuristics claim novelty when they are just recombining elements from other methods. Hence, the need for a standard metaheuristic model is vital to stop the current frenetic tendency of proposing methods chiefly based on their inspirational source. This work introduces a first step to a generalised and mathematically formal metaheuristic model, which can be used for studying and improving them. This model is based on a scheme of simple heuristics, which perform as building blocks that can be modified depending on the application. For this purpose, we define and detail all components and concepts of a metaheuristic (i.e., its search operators), such as heuristics. Furthermore, we also provide some ideas to take into account for exploring other search operator configurations in the future. To illustrate the proposed model, we analyse search operators from four well-known metaheuristics employed in continuous optimisation problems as a proof-of-concept. From them, we derive 20 different approaches and use them for solving some benchmark functions with different landscapes. Data show the remarkable capability of our methodology for building metaheuristics and detecting which operator to choose depending on the problem to solve. Moreover, we outline and discuss several future extensions of this model to various problem and solver domains.en_ZA
dc.description.departmentComputer Scienceen_ZA
dc.description.librarianam2021en_ZA
dc.description.sponsorshipThe Research Group in Intelligent Systems at the Tecnológico de Monterrey (México), the Project TEC-Chinese Academy of Sciences, and by the CONACyT Basic Science Project.en_ZA
dc.description.urihttp://www.mdpi.com/journal/mathematicsen_ZA
dc.identifier.citationCruz-Duarte, J.M., Ortiz-Bayliss, J.C., Amaya, I. 2020, 'Towards a generalised metaheuristic model for continuous optimisation problems', Mathematics, vol. 8, no. 11, art. 2046, pp. 1-23.en_ZA
dc.identifier.issn2227-7390
dc.identifier.other10.3390/math8112046
dc.identifier.urihttp://hdl.handle.net/2263/80381
dc.language.isoenen_ZA
dc.publisherMDPIen_ZA
dc.rights© 2020 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_ZA
dc.subjectContinuous optimisationen_ZA
dc.subjectMathematical modelen_ZA
dc.subjectMetaheuristicsen_ZA
dc.titleTowards a generalised metaheuristic model for continuous optimisation problemsen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CruzDuarte_Towards_2020.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: